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332 GRECO ET AL.

I. Introduction

The search for synergy has followed many tortuous

paths during the past 100 years, and especially during

the last 50 years. Claims of synergism for the effects,
both therapeutic and toxic, of combinations of chemicals
are ubiquitous in the broad field of Biomedicine. Over

20,000 articles in the biomedical literature from 1981 to
1987 included “synergism” as a key word (Greco and

Lawrence, 1988). Travelers on the search for synergy
have included scientists from the disciplines of Pharma-

cology, Toxicology, Statistics, Mathematics, Epidemiol-
ogy, Entomology, Weed Science, and others. Travelers

have independently found the same trails, paths have

crossed, bitter fights have ensued, and alliances have
been made. The challenge of assessing the nature and

intensity of agent interaction is universal and is espe-

cially critical in the chemotherapy of both infectious

diseases and cancer. In the mature field of anticancer
chemotherapy, with minor exceptions, combination che-
motherapy is required to cure all drug-sensitive cancers

(DeVita, 1989). For the nascent field of Antivira.l Che-
motherapy, combination chemotherapy is of great re-

search interest because of its great clinical potential
(Schinazi, 1991). Our review should aid investigators in
understanding the various rival approaches to the as-

sessment ofdrug interaction and assist them in choosing
appropriate approaches.

We will make no attempt to offer advice on the use of

a discovery of synergy. The interpretation of the impact

of both qualitative and quantitative measures of agent
interaction is dependent upon the field of application. At

the very least, an agent combination that displays mod-
erate to extreme synergy can be labeled as interesting
and deserving offurther study. (Inventors may use proof
of synergy as support for the characteristic of “unobvi-
ousness,” which will assist them in receiving a patent for
a combination device or formulation with the United

States Patent Office.)
There have been many previous reviews of this con-

troversial subject of agent interaction assessment.
These critiques are summarized in the next section.
However, our review is unique in several ways. First,
our bias is toward the use of response surface concen-

tration-effect models to aid in the design of experiments,
to use for fitting data and estimating parameters, and to
help in visualizing the results with graphs. In fact, be-
cause a major strength ofresponse surface approaches is

that they can help to explain the similarities and differ-

ences among other approaches, the entire review is from

* Supported by grants from the National Cancer Institute,

CA46732, CA16056 and RR10742.

t Abbreviations: 3-D, three-dimensional; 2-D, two-dimensional;

Eq., equation; vs., versus; see table 2 for mathematical/statistical

abbreviations.

To whom correspondence should be addressed: Dr. William R.

Greco, Department of Biomathematics, Roswell Park Cancer Insti-

tute, Buffalo, NY 14263

a response surface perspective. [Response surface meth-

odology is composed of a group of statistical techniques,
including techniques for experimental design, statistical

analyses, empirical model building, and model use (Box
and Draper, 1987). A response surface is a mathematical
equation, or the graph of the equation, that relates a

dependent variable, such as drug effect, to inputs such

as drug concentrations.] Second, two common data sets,
one with continuous responses and one with discrete

success/failure responses, are used to compare 13 spe-
cific rival approaches for continuous data, and three
rival approaches for binary success/failure data, respec-

tively. Third, many detailed criticisms of many ap-
proaches are included in our review; these criticisms
have not appeared elsewhere.

It should be noted that the goal of this review is to

underscore the similarities, differences, strengths, and

weaknesses of many approaches, but not to provide a

complete recipe for the application of each approach.
Readers who need the minute details of the various

approaches should refer to the original articles. A good
compendium of recipes for many of the approaches in-
cluded in this review is the fourth chapter of a book by

Calabrese (1991). It should also be noted that many of
the approaches were originally written as guidelines,
not detailed algorithms. Therefore, our specific imple-
mentations of several of the methods may have differ-

ences from the approaches actually intended by the orig-

inal authors.

There is no uniform agreement on the definitions of

agent interaction terms. Sources for extensive discus-
sions ofrival nomenclature include the following: Beren-
baum (1989); Calabrese (1991); Copenhaver et al.
(1987); Finney (1952, 1971); Gessner (1988); Hewlett
and Plackett (1979); Loewe (1953); Kodell and Pounds
(1985; 1991); Valeriote and Lin (1975); Unkelbach and

Wolf (1984); and Wampler et a!. (1992). It is our view

that many of the naming schemes are unnecessarily
complex. We will use a simple scheme that was the
consensus of six scientists who debated concepts and
terminology for agent interaction at the Fifth Interna-

tional Conference on the Combined Effects of Environ-
mental Factors in Sarriselk#{228}, Finnish Lapland, Septem-

ber 6 to 10, 1992 (Greco et al., 1992). The six scientists,
from the fields of Pharmacology, Toxicology and Biome-

try, comprised a good representative sample of advo-
cates of diametrically opposing views on many issues.

Table 1 lists the consensus terminology for the joint

action of two agents, the major part of the so-called
Saariselk#{228} agreement. The foundation for this set of
terms includes two empirical models for “no interaction”

for the situation in which each agent is effective alone.
(Even though the term “interaction” has a mechanistic
connotation when applied to agent combinations, it will
be used throughout this article in a purely empirical
sense. Also, the less-mechanistic term, “combined-
action” will be often substituted for “interaction” when
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SEARCH FOR SYNERGY 333

TABLE 1

Consensus terminology for two-agent combined-action concepts

Both agents effective
individually; Eq. 6 is
the reference model

Both agents effective
individually; Eq. 11 or 14

is the reference model

Only one agent
effective individually

Neither agent
effective individually

Combination effect greater than Loewe synergism Bliss synergism synergism coalism

predicted

Combination effect equal to Loewe additivity Bliss independence inertism inertism

prediction from reference model

Combination effect less than Loewe antagonism Bliss antagonism antagonism

predicted

feasible.) The mathematical details of these two models

are described in Section III, and the debate over which of
these is the best null reference model is the subject of

Section IV. The first model is that of Loewe additivity
(Loewe and Muischnek, 1926), which is based on the

idea that, by definition, an agent cannot interact with

itself. In other words, in the sham experiment in which
an agent is combined with itself, the result will be Loewe

additivity. The second model is Bliss independence
(Bliss, 1939), which is based on the idea of probabilistic
independence; i.e., two agents act in such a manner that

neither one interferes with the other, but each contrib-
utes to a common result. The cases in which the ob-

served effects are more or less than predicted by Loewe

additivity or Bliss independence are Loewe synergism,
Loewe antagonism, Bliss synergism, and Bliss antago-

nism, respectively. The use of the names Loewe and
Bliss as adjectives emphasizes the historical origin of

the specific models and deemphasizes the mechanistic

connotation of the terms additivity and independence.
Both Loewe additivity and Bliss independence are in-
cluded as reference models, because each has some log-
ical basis, and especially because each has its own cote-

ne of staunch advocates who have successfully defended
their preferred model against repeated vicious attacks

(see Section IV). As shown in table 1, when only one
agent in a pair is effective alone, inertism is used for “no
interaction,” synergism (without a leading adjective) for

an increased effect caused by the second agent, and

antagonism for the opposite case. Alternate common

terms for the latter two cases are potentiation and inhi-
bition. When neither drug is effective alone, an ineffec-
tive combination is a case of inertism, whereas an effec-
tive combination is termed coalism.

For the cases in which more than two agents are
present in a combination, it may not always be fruitful to

assign special names to the higher order interactions. It

may be better to just quantitatively describe the results
of a three-agent or more complex interaction than to pin
a label on the combined-action. However, in some fields,

such as Environmental Toxicology, it may be useful to
assign a descriptive name to a complex mixture of chem-
icals at specific concentrations. Then, six of the above-

mentioned terms have clear, useful extensions to higher

order interactions: Loewe additivity, Loewe synergism,

Loewe antagonism, Bliss independence, Bliss syner-

gism, and Bliss antagonism. Note also that all ten terms
are defined so that as the concentration or intensity of

the agent(s) increases, the pharmacological effect mono-

tonically increases. This is why the lower right-hand cell
of table 1 is missing; a pharmacological effect less than
zero is not defined. However, because in the field of

chemotherapy it is common for increased concentrations
of drugs to decrease the survival or growth of infectious

agents or of tumor cells, most of the concentration-effect
(dose-response) equations and curves in this review will
assume a monotonically decreasing observed effect (re-
sponse), such as virus titer. The dependent response

variable will be labeled as effect, % effect, % survival, or

% control in most graphs and will decrease with increas-
ing drug concentration. In contrast, IDx values such as

ID25 Will refer to the concentration of drug resulting in
X% of pharmacological effect (e.g., 25% inhibition, leav-

ing 75% of control survival). The above definitions and

conventions will become clearer in later sections with

the introduction of defining mathematical equations.
The emphasis of this review will be on approaches to

assess combinations of agents that yield an unexpect-
edly enhanced pharmacological effect. Loewe additivity
and Bliss independence will be used as references to give

meaning to claims of Loewe synergism and Bliss syner-
gism, respectively. Loewe antagonism will be only
briefly discussed, as will synergism, antagonism, and

coalism. Most concentration-effect models and curves in

this review will be monotonic. Therapeutic synergy in in
vivo and in clinical systems, which involves a mixture of

efficacy and toxicity, and which often involves nonmono-
tonic concentration-effect curves for each agent individ-
ually and for the combination, will not be discussed.

The preceding discussion referred to global properties

of agent combinations; i.e., it was implied that a partic-
ular type of named interaction, such as Loewe syner-
gism, appropriately described the entire 3-D� concentra-
tion-effect surface. Some agent combinations may

demonstrate different types of interaction at different
local regions of the concentration-effect surface. When
this occurs, the interaction terms in table 1 can be used

to describe well defined regions. However, it is impor-

tant to differentiate true mosaics of different interaction
types from random statistical variation and/or artifacts
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[1]

Strategy & Tactics for Assessing
Agent interactions

FIG. 1. Schematic diagram of a general approach to the assess-

ment of the nature and intensity of agent interactions, which in-

cludes all specific approaches.
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caused by faulty data analysis methods. Unfortunately,

rigorous methods to identify true mosaics are not yet

available.

II. Review of Reviews

We have divided reviews on the subject of synergy into

three classes: (a) whole books, some of which include

new methodology, and some of which do not; (b) book

chapters and journal articles entirely dedicated to re-
view; and (c) book chapters and articles with noteworthy

introductions and discussions ofcombined-action assess-

ment, but which also include new specific methodology
development or data analyses. Books include: Brunden

et al. (1988); Calabrese (1991); Carter et al. (1983); Chou

and Rideout (1991); National Research Council (1988);

P#{246}ch(1993); and Vollmar and Unkelbach (1985). Book

chapters and articles dedicated to a review of the field

include: Berenbaum (1977, 1981, 1988, 1989); Copen-

haver et a!. (1987); Finney (1952, 1971); Gessner (1988);
Hewlett and Plackett (1979); Jackson (1991); Kodell and

Pounds (1991); Lam et al. (1991); Loewe (1953, 1957);

Rideout and Chou (1991); and Unkelbach and Wolf
(1984). Book chapters and articles that include signifi-

cant reviews of various approaches, but which also in-

dude either new methodology development and/or anal-
yses ofnew data include: Chou and Talalay (1983, 1984);

Gennings et al. (1990); Greco (1989); Greco and Dembin-

ski (1992); Hall and Duncan (1988); Kodell and Pounds

(1985); Prichard and Shipman (1990); S#{252}hnel(1990);

Syracuse and Greco (1986); Tallarida (1992); and

Machado and Robinson (1994).
Although not exhaustive, this list includes a compre-

hensive, redundant account of the interaction assess-
ment literature. This list includes critical and non-
critical reviews of history, philosophy, semantics,

approaches advocated by statisticians, and approaches
advocated by pharmacologists. Most of the reviews are

biased toward the respective authors’ point of view, and
many of the reviews harshly criticize the work of rival

groups. Our review is no exception. A subset of these

reviews, which along with our own, will provide a com-

prehensive, but not overly redundant view of the field
include: chapters 1 to 4 of Calabrese (1991), which pro-

vide a relatively noncritical recipe-like description of

concepts, terminology, and assessment approaches, in-

cluding many disagreements with our review; chapters 1
to 2 of Chou and Rideout (1991), which also provide a
contrasting view to our review on many issues; Copen-

haver et al. (1987), which accents the approaches devel-

oped by statisticians; Berenbaum (1981, 1988, 1989),
which critically review the approaches developed by

pharmacologists; Gessner (1988), which examines ap-
proaches developed both by statisticians and pharmacol-
ogists; and Kodell and Pounds (1991), which may be the

best source for a rigorous comparison of rival concepts

and nomenclature.

III. General Overview of Methods from a

Response Surface Perspective

Figure 1 is a schematic diagram of a general approach
to the assessment of the nature and intensity of drug
interactions. This scheme includes all of the approaches

examined in later sections. This is because, in essence,
figure 1 describes the scientific method. A formal statis-

tical response surface way of thinking underlies all of
this section. With such an orientation, the similarities
and differences among rival approaches for the assess-
ment of drug interactions, both mathematically rigorous

ones and not-so-rigorous ones, can be readily explained.

Step 1 is to choose a good concentration-effect (dose-
response) structural model for each agent when applied

individually. A common choices is the Hill model (Hill,
1910), which is also known as the logistic model (Waud

and Parker, 1971; Waud et al., 1978). The Sigmoid-
Emax model (Holford and Sheiner, 1981), is equivalent

to a nonlinear form of the median-effect model (Chou

and Talalay, 1981, 1984). However, the equivalence of
the median-effect and Hill models is disputed by Chou
(1991). The Hill model is shown in figure 2 and as Eq. 1

for an inhibitory drug. Symbol definitions are listed in

table 2.

I D \m

E - Emax����)
- fD\m

1+���)

 at T
ham

m
asart U

niversity on D
ecem

ber 8, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


Ui

Ui

FIG. 2. Graph ofthe Hill (1910) model, which is also referred to as

the Sigmoid-Emax model (e.g., Holford and Sheiner, 1981), and

which is also a nonlinear form of the median-effect equation (Chou

and Talalay, 1984).

0 ( Drug Concentration)

I D \m

Econ�-)

E ID\m

= i+�)

I D \m
(Econ -B)(---------)

E - \ICSO/
- /D\m

[2]
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In Eq. 1, E is the measured effect (response), such as the
virus titer remaining in a culture vessel after drug ex-

posure; D is concentration of drug; Emax is the full

range ofresponse that can be affected by the drug; Dm or
IC50 is the median effective dose (or concentration) of

drug (or ID50, ED50, LD50, etc.); and m is a slope param-

eter. When m has a negative sign, the curve falls with
increasing drug concentration; when m is positive, the

curve rises with increasing drug concentration. The con-
centration-effect curve in figure 2 can be thought of as

an ideal curve formed by data with no discernible van-
ation, or as the true curve known only to God or to

Mother Nature, or as the average curve formed by an
infinite number of data points at each of an infinite

number of evenly spaced concentrations. Equations 2 to
4 are additional candidate structural models for single
agents.

11
Dln�

E = Econ exp(aD) = Econ exp
IC50

In Eqs. 2 and 3, the parameter Econ is the control effect

(or response when no inhibitory drug is applied). When
there is no B (background response observed at infinite
drug concentration), then Econ is equivalent to Emax, as
in Eq. 2. However, when there is a finite B, then Econ =

Emax + B. Eq. 4 is the exponential concentration-effect

model, which can also be parameterized with an IC50.

Because real experiments rarely generate data that

fall on the ideal curve, Step 2 in figure 1 is to choose an
appropriate data variation model. Model candidates in-
dude the normal distribution for continuous data, such

as found in growth assays in which the absorbance of a
dye bound to cells is the measured signal; the binomial

distribution (Larson, 1982) for proportions of failures or
successes, such as in acute toxicology experiments; and

the Poisson distribution for low numbers of counts, such

as in clonogenic assays. A composite model is formed
from one structural model plus one data variation model

and eventually used for fitting to real experimental

data. This concept, called generalized nonlinear model-
ing (McCullagh and Nelder, 1989) is illustrated in figure

3, with the Hill model as the structural model, and the
normal, binomial, and Poisson distributions (respective-

ly from left to right) as the random models. (Note that

only one random component is usually assumed for a
particular data set. Graphs ofthree random components

are pictured in figure 3 to illustrate the universal nature
of the approach. The lower equation in the figure is a
variant of the Hill model, and the upper one is for the

binomial distribution. These equations will be described

in detail in Section VI.)
In Step 3, most approaches can be categorized into one

of two main strategies. In Step 3a, a structural model is

derived for joint action of two or more agents with the
assumption of “no interaction” (Loewe additivity, Bliss
independence, or another null reference model). Then,

after the experiment is designed and conducted, data
from the combination of agents is compared with predic-

tions of joint action from a null reference combined-
action model. This comparison can be made with formal
statistical rejections ofnull hypotheses, or by less formal
methods. In contrast, in Step 3b, a structural model is

derived for joint action that includes interaction terms.
Then, after the experiment is designed and conducted,
the full combined-action model is fit to all of the data at

once, and interaction parameters are estimated. Both
the left-hand and right-hand strategies end in a set of
guidelines for making conclusions.

[31 Examples of approaches that use the left-hand strat-
egy include: the classical isobologram approach (Loewe
and Muischnek, 1926); the fractional product method of
Webb (1963); the method ofValeriote and Lin (1975); the
method of Drewinko (1976); the method of Steel and
Peckham (1979); the method of Gessner (1974); the

[41 methods of Berenbaum (1977, 1985); the median-effect
method (Chou and Talalay, 1981, 1984); the method of

Prichard and Shipman (1990); and the method of Laska

et al. (1994). Examples of approaches that use the right-
hand strategy include the universal response surface

approach (Greco et al., 1990; Greco and Lawrence, 1988;

Greco, 1989; Greco and Tung, 1991; Syracuse and Greco,
1986); the response surface approaches of Carter’s group
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Symbol

D, [drug], D1, [drug 11, D2, [drug 2]

“‘1,12

Econ
Emax

B
fa
fu

fi

IC50, � ICsoi, IC502

Dm, Dm1, Dm2 Dm12

IDE, D�, ICE, ID�1, D�1, ID�2, Dx2, Dx12

x
m, m1, m2, m12

a

a, b
PC1, PC2, bp1, bp2

‘l

fo, 13i’ 1�2’ $12

I

CI

R

E
Y

y

P(.)

k
n

TABLE 2

Mathematical/statistical symbol definitions

. Definition

Measured effect (or response), in this review, usually a measure of survival

Transformed response variable, continuous or discrete

A particular value of Y

Probability that the function in parenthesis is true

Mean or expected value of a transformed response

Number of successes in a binomial trial

Number of attempts in a binomial trial

Concentration (or dose) of drug, drug 1, drug 2

Inhibitor concentrations for an inhibitor, inhibitor 1, inhibiter 2

Control effect (or response)

Maximum effect (response), is equal to Econ for an inhibitory drug in the absence of a

background, B
Background effect (response) observed at infinite concentration for an inhibitory drug

Fraction of effect affected

Fraction of effect unaffected

Fraction enzyme velocity inhibited

Concentration (or dose) of drug resulting in 50% inhibition ofEmax, of drug 1, of

drug 2

Median effective dose (or concentration) of drug, of drug 1, of drug 2, of a combination

of drugs 1 and 2 in a constant ratio (equivalent to IC50)
Concentration (or dose) of drug resulting in X% inhibition of Emax, of drug 1, of drug

2, or a combination of drugs 1 and 2 in a constant ratio

% inhibition

Slope parameter, for drug 1, for drug 2, for a combination of drugs 1 and 2 in a

constant ratio

Synergism-antagothsm interaction parameter

Empirical parameters for exponential concentration-effect model

Interaction parameters of model 29

Interaction parameter of model 30

Empirical parameters for probit and logistic models

Interaction index of Berenbaum (1977)

Combination index of Chou and Talalay (1984)

Ratio ofD1 to D2

U
.

w

FIG. 3. General scheme for the dissection of a generalized nonlin-

ear model into random and structural components for a concentra-

tion-effect curve for a single drug.

(Carter et al., 1983, 1986, 1988; Gennings et al., 1990);
the response surface approach ofWeinstein et a!. (1990);
the generalized linear model approach of Lam et al.
(1991); and the response surface approach of Machado

and Robinson (1994). The method proposed by SUhnel
(1990) has elements ofboth the left-hand and right-hand

strategies.

Although most, and possibly all, approaches for as-

sessing agent combinations may fall under the scheme

presented in figure 1, the different approaches differ

from each other in many respects. The approaches de-

veloped by pharmacologists usually stress structural

models, e.g., the median-effect approach (Chou and Ta-

lalay, 1984), whereas the approaches developed by stat-

isticians usually stress data variation models, e.g., the

approaches of Finney based on probit analysis (Finney,
1952). There are differences in the definitions of key

terms, especially that of “synergism.” Some approaches

only yield a qualitative conclusion (e.g., Loewe syner-

gism, Loewe antagonism, or Loewe additivity), such as

the classical isobologram approach, whereas others also

provide a quantitative measure of the intensity of the

interaction, such as the universal response surface ap-

proach. There are differences in the degree of mathemat-

ical and statistical rigor, i.e., some approaches are per-
formed entirely by hand (e.g., the classical isobologram

approach), whereas others require a computer (e.g., uni-
versal response surface approach). Some approaches use
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parametric models (e.g., Greco et al., 1990), whereas

others emphasize nonparametric models (e.g., Suhnel,

1990; Kelly and Rice, 1990). The suggested designs for
experiments differ widely among the different ap-
proaches. It is therefore not surprising that it is possible

to generate widely differing conclusions on the nature of
a specific agent interaction when applying different
methods to the same data set. This will be illustrated

dramatically in Sections V and VI.

We are highly biased in our view that the right-hand

strategy in figure 1 for assessing agent interactions is
superior to the left-hand strategy when used for the

cases in which an appropriate response surface model
can be found to adequately model the biological system
of interest. However, for preliminary data analyses for

all systems, for the final data analyses of complex sys-

tems, and for cases in which the data is meager, the
left-hand approaches are often very useful.

The derivation of Eq. 5, the flagship equation for two-

agent combined-action developed by our group, is pro-
vided in detail in Greco et al. (1990). Although we do not

put forward Eq. 5 as the model of two-agent combined-
action, it is a model of two-agent combined-action that
has proved to be very useful for both practical applica-

tions (Greco et al., 1990; Greco and Dembinski, 1992;

Gaumont et al., 1992; Guimar#{227}s et al., 1994) and meth-
odology development (Syracuse and Greco, 1986; Greco

and Lawrence, 1988; Greco, 1989; Greco and Tung, 1991;
Kbinkis and Greco, 1993; Khinkis and Greco, 1994;

Greco et al., 1994). Eq. 5 wili be used throughout this
review to illustrate concepts of combined-action and to

assist in the comparison of rival data analysis ap-
proaches. Eq. 5 was derived with an adaptation of an

approach suggested by Berenbaum (1985), with the as-
sumption of Eq. 2 as the appropriate model for each
agent alone. The interaction parameter is a.

D1 D2
1= � E \1Jrni�

IC5o,1�E _E)

[511
cv�D1D2

+ I E \(1/2m1+1i2m2)

IC5o,1IC5o,2�E - E)

Eq. 5 allows the slopes of the concentration-effect curves
for the two drugs to be unequal. It is this key feature
that distinguishes Eq. 5 from many other response sur-
face models used by others to describe agent interactions
(e.g., Carter et al., 1988). (This point is expanded in
Section V.1. B.2.). Because Eq. 5 is in unclosed form (the

dependent variable, E, cannot be isolated on the left-
hand side of the equation), a one-dimensional bisection

root finder (a computer numerical procedure explained,

e.g., by Thisted, 1988) is used to calculate E for simula-
tions. Eq. 5 was not derived from biological theory,

rather it is an empirical equation that often matches the

shape of real data (e.g., Gaumont et a!., 1992; Greco et

al., 1990; Greco and Dembinski, 1992; Greco and Law-
rence, 1988). However, as shown below, it is consistent

with Eq. 6, the equation for Loewe additivity (Loewe and

Muischnek, 1926), which is the basis ofmany interaction
assessment approaches.

D1 D2

1=m�-;�m�-; [6]

For an inhibitory drug, Eq. 6 refers to a particular X%

(percent inhibition level), e.g., 58% inhibition. ID�1,

ID�,2 are the concentrations of drugs to result in X%
inhibition for each respective drug alone, and D1, D2 are

concentrations ofeach drug in the mixture that yield X%
inhibition. When the right-hand side of Eq. 6 [equal to
the Interaction index, I, of Berenbaum (1977) or to the

combination index, CI, for the mutually exclusive case of
Chou and Talalay (1984)] is less than 1, then Loewe
synergism is indicated, and when the right-hand side is

greater than 1, Loewe antagonism is indicated. When
Eq. 2 is an appropriate concentration-effect model for

each drug alone, then Eq. 7, which is a rearrangement of
Eq. 2 [similar to a rearrangement of the median-effect

equation from Chou and Talalay (1984)], relates the ID�

value for any X% inhibition to the observed response

level, E, and the parameters, Econ, IC50, and m.

[71

Note that the right-hand expression of Eq. 7 is the same
as the denominators of the first two right-hand terms of
Eq. 5. Therefore, the first two right-hand terms ofEqs. 5

and 6 are equivalent. It follows that Eq. 8 defines I [or CI

for the mutually exclusive case of Chou and Talalay
(1984)1 for two-drug combinations whose individual

components have concentration-effect curves that follow

Eq. 2.
D1 D2

I=CI= � E \Vmi�

IC5o,1�E _ E)

[81
aD1D2

- 1 - � E \(lJ2rnI+112m2)

IC5o,1IC5o,2I��E - E)

Therefore, based upon the interaction index, I-when a
is positive, Loewe synergism is indicated, when a is
negative, Loewe antagonism is indicated, and when a is

0, Loewe additivity is indicated. The magnitude of a
indicates the intensity ofthe interaction. Thus, although
Eq. 5 is not the model for Loewe synergism (or Loewe

antagonism), it is a model for Loewe synergism (or

Loewe antagonism) that is consistent with the more

general Loewe additivity model, Eq. 6.

I E \11m2

IC5o,2�E _ E)

I E \1/m2

IC5o,2�E _ E)
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We now use the concept that Eq. 5 generates a Loewe direction between the isobol and the Loewe additivity

synergistic response surface at all effect levels, and we diagonal are equal to the interaction term divided by J2.

present several 3-D and 2-D graphical representations of In panel (B), panel (A) is redrawn with the curves re-
Eq. 5 to help to show the similarities and differences moved, with many horizontal, vertical and diagonal

among the various approaches to the assessment of lines drawn, and with vertices labeled. These reference

Loewe synergism. lines and ubiquitous 45#{176}triangles all aid in the inter-
Figure 4 shows the relationship between a 3-D re- pretation of the geometry of the 25% isobol (75% con-

sponse surface of Loewe synergism, the construction of trol). In panel (B), the length of each thick line repre-
isobols, and the calculation of interaction indices. The sents the magnitude of the interaction term. This is a

3-D surface was simulated with Eq. 5, our flagship general result and will be true for a large class of specific
model for agent interaction for the case in which the equations that follow the general interaction equation,
individual drugs follow the Hill model, Eq. 2, with un- Eq. 9.

equal slope parameters. The interaction parameter, a,

was made equal to 5 to demonstrate strong synergism.

The other parameters used and additional technical de-

tails are listed in the figure legend. Note the scooped out

- �R�_ + [9]
1 IDx,2

nature ofthe Loewe synergistic surface in contrast to the Eq. 9 is a general form that is independent ofthe specific
three Loewe additivity bars at 75%, 50%, and 25% of concentration-effect models for each drug (that may be
control. A complete Loewe additivity surface (a = 0) different for each drug). Also, the interaction term may
would consist of straight lines running across the sur- be any function of the normalized concentrations, may
face parallel to these bars at every effect level. To show include any number of interaction parameters, a, and
the 3-D origin of 2-D isobols, the surface is cut and may include any number of additional parameters, p.
separated at the 25%, 50%, and 75% effect levels and Additional specific response surface interaction models,
rotated so that the viewer sees the surface from the top. including ones from Weinstein et al. (1990) and
The isobols in panel (D) are not symmetric because ofthe Machado and Robinson (1994), which are consistent
different slope parameters for drug 1 (m = -1) and drug with Eq. 9, are described in Section V.L.
2 (m = -2). However, as seen in panel (E), normalizing Figure 6 shows the geometrical relationships for 50%
the drug concentrations by the respective IDx values effect isobols for Eq. 5, with various values of a listed in
(from Eq. 7) makes the isobols symmetric. In addition, the figure legend. When a is positive, the isobols are to
the normalization reverses the order of the isobols and the left of the Loewe additivity diagonal (a = 0), line E;
makes the Loewe additivity lines lie on top of each other larger a values increase the bowing of the isobols, mdi-
for all effect levels. Panel (E) shows the geometrical cating more intense Loewe synergism. When a is nega-
relationships among normalized isobols, interaction (or tive, the isobols are to the right of the Loewe additivity
combination) indices, and response surface equations. diagonal; as a increases in absolute value, the isobols
One specific CI calculation is given for one specific point become more bowed, indicating more intense Loewe an-
on the 25% pharmacological effect (75% control) isobol. tagonism. The degree of bowing of the isobols can be
The calculated CI is 0.68, indicating Loewe synergism. quantitated as the ratio ofthe line segments, S = on/om
Vertical lines, made up of three different line patterns, (Hewlett, 1969) or by the sum of op + oq (Elion et al.,
run through the two data points. The three segments of 1954). The interaction parameter, a, is related to these
each line correspond to the three right-hand parts ofthe geometrical measures (Greco et al., 1990). Eq. 10 was
response surface model, Eq. 5. derived by Greco et al. (1990) and shows the relationship

The geometrical relationships between interaction between a and S for the 50% effect isobols of Eq. 5.
models and isobols are further examined in figure 5.
Note in panel A that lines at a 45#{176}angle in the northeast a = 4(S2 - S) [10]
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ID1 �
+ 11-’ -,a,p

1 2

FIG. 4. Illustration ofthe relationship between a 3-D response surface ofLoewe synergism, the construction ofisobols, and the calculation

ofcombination (interaction) indices. (A) A hypothetical 3-D solid shaded graph ofmeasured effect (response, survival, or some other endpoint)

expressed as a percent of control effect vs. the concentrations of drug 1 and drug 2. This graph was simulated with Eq. 5, with parameters:

Econ = 100, IC50,1 = 1, IC50,2 = 1, m1 = -1, m2 = -2, a = 5. The horizontal lines connecting the edges of the surface at 75%, 50%, and 25%

ofcontrol are part ofa Loewe additivity surface (Eq. 5, a = 0). (B) The surface is cut and separated at the 75%, 50%, and 25% ofcontrol levels,

and the sections are pulled apart to accent the inward curved shape of the surface. (C) The sectioned surface is being rotated so that the

viewer will be able to see the surface from the top. (D) A view ofthe surface from the top; a set of2-D isobols at 75%, 50%, and 25% of control,

along with their corresponding Loewe additivity lines. (E)An isobologram in which the isobols at 75% and 25% ofcontrol each have their drug

concentrations normalized by their respective IDxvalues. This makes all of the isobols symmetrical, makes all of the Loewe additivity lines

coincide, and reverses the order of the isobols. Two vertical lines, each running the full length of the Y-axis, and each comprised of three

segments ofdifferent line patterns, one for the 25% isobol(75% ofcontrol) and one for the 75% isobol (25% ofcontrol) show the correspondence

between the isobol diagram and Eq. 5. Each ofthe three segments corresponds to one ofthe three right-hand expressions ofEq. 5. In addition,

the correspondence of the combination (or interaction) index, CI, and the isobols and Eq. 5 is illustrated.
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FIG. 5. Diagram to show the general correspondence between the geometry of interaction isobols and the algebraic expressions of

interaction mathematical models. (A) An elaboration of Figure 4, Panel(E), which shows the correspondence between the lengths of line

segments in the normalized isobologram and the value ofthe three right-hand expressions in Eq. 5 at 75% ofcontrol. Note that the interaction

term that contains a, is the vertical distance between the curved isobol and the additivity line. (B) Panel (A) is redrawn, but only for the 25%

isobol (75% of control) (with the curve removed), and many horizontal, vertical, and diagonal lines drawn and vertices labeled. The length

of each thick line is equal to the value of the interaction term. This is a general correspondence, and will be true for many specific models

that follow the general form of Eq. 9.

I .0

E

csi

0.6

Di/Dm

FIG. 6. Examples of isobols for the 50% effect level, simulated

from equation 5, for a range of a values. For curves A through H, a

was 100, 2, 1, 0.5, 0, -0.5, -0.75, and-O.99. Curves A through D

represent varying degrees of Loewe synergism; curves F through H

represent varying degrees of Loewe antagonism, and curve E is the

straight line of Loewe additivity. The point n is the center of the

straight Loewe additivity line, and points m are the centers of

the other isobols. Points p and q are the abscissa and ordinate of the

point m. The degree of bowing of the isobols can be quantitated as

the ratio of the line segments, S = om/on (Hewlett, 1969) or by the

sum of op + oq (Elion et al., 1954).

Figure 7 shows the relationship between the same 3-D
response surface described in figure 5 and the concept of
the CI vs. [a plot (mutually exclusive case) of the medi-

an-effect approach (Chou and Talalay, 1984). Although

the exact calculations for the CI vs. [a plot suggested by

Chou and Talalay (1984) will be disputed in Section V.G,

we believe that the general idea has great merit. Essen-

tially, the 3-D surface is cut lengthwise along a fixed
ratio ofD1D2 (for example, a ratio of 1:1 in fig. 7). Then,

both the Loewe synergistic ray and the predicted Loewe

additivity ray are drawn on a 2-D concentration-effect

graph, both rays are normalized by the ID� values along

their whole lengths, and then the normalized graph is
rotated counterclockwise by 90#{176}.The details are pro-

vided in the figure legend.

Figure 8 is another graphical sequence, using the

same simulated 3-D surface as shown in figures 4, 5, and

7, created to illustrate the concept ofthe CI vs. fa plot. In

panel (A), the Loewe synergistic surface is deleted ex-

cept for one vertical, infinitely thin slice for the fixed

ratio of D1D2 of 1:1. The length of the short horizontal

line segments at various effect levels drawn from the

curve to the backplanes are the values ofD1 and D2 used
to construct the Loewe synergistic surface. Panels (B)

and (C) show the unnormalized and normalized set of

isobols, respectively. The solid points in these panels are

the same ones as in figure 7. The sum ofone vertical and

one horizontal line from each point in Panel C is equal to

the CI at that effect level. Details are provided in the

figure legend.
Thus, in essence, the isobologram approach consists of

making horizontal slices through a 3-D surface, and the

median-effect approach (mutually exclusive case) con-
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FIG. 7. Illustration of the relationship between a 3-D response surface of Loewe synergism and the CI vs. fa plot of the median-effect

approach (Chou and Talalay, 1984).(A) The same hypothetical 3-D solid shaded graph shown in figure 4 is shown here. A curve is drawn on

the surface for a fixed ratio ofD1..D2 of 1:1, and a corresponding Loewe additivity curve, to the right ofthe solid surface, is drawn for the same

fixed ratio of D1D2 (a = 0). (B) The solid surface is cut and separated at the fixed ratio of D1D2 to accent the shape of the curved Loewe

synergistic surface (the Loewe additivity curve was removed for clarity). (C) A 2-D plot of the Loewe synergistic and additive curves at the

same fixed ratio of D1D2,, with D1 + D2 as the X-axis. The solid points in Panels (C) through (E) correspond to % Control levels of 99, 95,

90, 75, 50, 25, 10, 5, and 1. (D) The drug concentrations have been normalized by their respective ID�s, and the X-axis is now the sum of the

normalized concentrations. (E) Because the normalized sum is the same as the combination index, CI, for the mutually exclusive model, Eq.

8 (Chou and Talalay, 1984), and the % control is the same as 100 [1 - fa] (where fa is the fraction of effect affected), the CI vs. fa plot can be

obtained by rotating the graph in Panel D counterclockwise by 90#{176}.

sists of making vertical slices through the same 3-D
surface. Both approaches and their variants then in-
dude examination of the shape of the slices, with or
without data transformations, andlor making some cal-
culations to summarize the shape of the slices, usually

with comparison to a Loewe additivity reference.
The difference between a Loewe synergistic surface

and a Loewe additivity reference surface can also be

examined in 3-D. The difference can be calculated in the
horizontal or vertical directions, and plotted, with or
without additional transformations. The use of differ-

ence surfaces to examine combined-actions has been
introduced by Prichard and Shipman (1990) and Suhnel

(1992c). The 3-D CI plot in figure 9 was calculated with
Eq. 8 for the same simulated Loewe synergistic surface

(a 5) shown in the previous figures. Note that CI
starts at 1 for each drug alone, and decreases toward
zero for combinations as either drug concentration in-

creases toward infinity. Thus, for Loewe synergistic
drug combinations that follow Eq. 5, there is more in-
tense interaction, as quantified by CI (or I), at higher

drug concentrations. In contrast, figure 10 [panels (A)
and (C)] shows the results of plotting the vertical differ-

ence between the Loewe synergistic (a = 5) and additiv-
ity surface. Panel (A) shows the Loewe synergistic sur-
face with a fishnet and the Loewe additivity surface as a
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FIG. 8. An additional illustration of the relationship between a 3-D response surface of Loewe synergism and the combination index, CI.
(A) For the same hypothetical surface shown in Figs. 4, 5, and 7, the concentration-effect curves for drug 1 and drug 2 alone are shown along

the back walls of the figure, together with the Loewe synergistic middle curve for a fixed ratio ofD1D2 of 1:1. Line segments from the joint

drug curve to the back walls represent the values ofD1 and D2 used to construct the curve at % Control values of 99, 95, 90, 75, 50, 25, 10,

and 5. (B) A view of the isobols for the surface from the top. The numbers next to the isobols indicate the % Control. The solid dots along the

northeast-pointing diagonal indicate the points corresponding to the fixed ratio ofD1’.D2 of 1:1 at the indicated levels of % Control. Although

not included in Panel (B), the line segments in Panel A would be horizontal and vertical lines from the dots to the axes. (C) The [Drug 1] and

[Drug 2] axes are normalized by the respective ID� values. The addition of the lengths of a horizontal plus a vertical line segment for each

solid dot equals the CI for the respective % Control level. These points correspond to the respective points in figure 7.

00 0.5 lU �

. �Drug2l

FIG. 9. A 3-D fishnet plot of the CI calculated from Eq. 8 for the

Loewe synergistic concentration-effect surface described in Figs. 4, 5,

7, and 8.

solid sheet on top of the fishnet. Note that the difference
between the two surfaces, shown in panel (C), has a peak
near D1 = D2 = 1. Thus, when looking at vertical differ-
ences, the largest synergism is not at infinite drug con-

centrations, but rather at achievable drug concentra-
tions near (but not exactly at) the IC50’s of each drug.
This critical difference in the two ways of forming dif-

ferences between Loewe synergistic and Loewe additive
surfaces, i.e., either in the horizontal or vertical direc-
tion, has profound implications for experimental design,

as discussed in Section VIII.

In figure 10, panels (B) and (D) were constructed in an

analogous manner to panels (A) and (C), except that the
null reference model was that for Bliss independence,

not for Loewe additivity. The general form of the Bliss

independence effects equation is Eq. 11, and a specific
form, which assumes that Eq. 2 is appropriate for each
drug individually, is Eq. 12.

fu12=fu1fu2 [11]

D1 \rni/ D2 \“�2

E - Econ(IC501) �IC50,2)
- I D1 ‘rn1\ I / D2 \m:\

(1+(IC ) )(i+
\ 50,1/ / \ �IC50,2) )

In Eq. 11, fis1, fu2, and fu12 are the fractions of possible
response for drug 1, drug 2, and the combination (e.g., %

survival, %control) unaffected (Chou and Talalay, 1984).
For Eqs. 2, 5, and 12, fu = ElEcon. Eq. 12 was used to

generate the upper solid surface in panel B. Note that

the difference plot in panel (D) has a central peak, but
the peak is higher than the analogous one for the Loewe
additivity reference in panel (C).

Which is a more appropriate reference, Loewe addi-

tivity (generally represented by Eq. 6) or Bliss indepen-
dence (generally represented by Eq. 11)? Some of the
approaches for interaction assessment examined in Sec-
tion V use the Loewe additivity reference and others use
the Bliss independence reference. This controversy is

examined in detail in Section N.

Our preferred paradigm of interaction assessment is
most closely akin to the philosophical principles ex-

pressed by Berenbaum (1981, 1985, 1988, 1989), but
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FIG. 10. (A) 3-D fishnet Loewe synergistic surface simulated with Eq. 5, with parameters: Econ = 100, IC501 = 1, IC50,2 = 1, m1 = -1, m2 =

-2, a 5, the same as in Figs. 4, 5, and 7 through 9. The solid surface on the top of the fishnet is a Loewe additivity surface simulated with

the same values for the first five parameters, but with a = 0. (B) The 3-D fishnet Loewe synergistic surface is the same one as in Panel (A),
but the solid top surface was simulated from the Bliss independence model, Eq. 12, with parameters: Econ = 100, IC50,1 = 1, IC50,2 = 1, m1 =

-1, m2 = -2. C. A 3-D solid shaded graph of the difference between the Loewe additivity and Loewe synergistic surfaces in Panel (A). The

contour lines are at five-unit intervals. (D) A 3-D solid shaded graph ofthe difference between the Bliss independence and Loewe synergistic

surfaces in Panel (B).

with several major differences. The elements of the par-

adigm include: (a) combined-action assessment is most
appropriate for complex systems in which a complete

correct description of the mechanisms by which the
agents cause their single and joint effects does not exist.
If such a description does exist, then mathematical mod-

els based upon a mechanistic understanding of the con-
centration-effect relationships should be applied to data,

not general combined-action mathematical models; (b)

the degree of departure from “no interaction” of the
concentration-effect surface for an agent combination is

a quantitative measure of the ignorance of the investi-
gator, i.e., if the system were well understood by the
investigator, and this understanding were incorporated

into the “no interaction” model, then the experimental
results would be as predicted (e.g., Loewe additiv-
ity)-no more, no less; (c) the Loewe additivity equation,
Eq. 6, the Bliss independence equation, Eq. 1 1 or 14, or
response surface interaction models adapted directly

from them, should be used in an initial step to evaluate
departures from the no interaction reference, without
regard to mechanistic interpretation; (d) a later useful

step in interaction assessment may involve the interpre-

tation of Loewe synergism, Loewe additivity, Loewe an-
tagonism, Bliss synergism, Bliss independence, Bliss an-

tagonism, synergism, inertism, antagonism, or coalism
via mechanistic arguments. For relatively simple sys-

tems, such as individual enzymes or receptors or small
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networks of enzymes and receptors, it may be useful to

establish the relationship between empirical interaction
models and mechanistic biochemical models. However,

except for very well understood simple systems, it is
unlikely that the results of a combined-action analysis

will unambiguously lead to a correct mechanistic expla-

nation of an observed agent interaction; (e) the main

uses of general combined-action analyses are:

(1) to summarize a large amount of data with a joint

concentration-effect surface, with relatively few param-

eters, for a combination of agents.

(2) to facilitate good predictions ofjoint effects in re-
gions in which no real data was collected (interpolation

and judicious extrapolation).

(3) to empirically find and characterize agent combi-
nations with intense interactions, in order to use or to

avoid the combinations for specific practical purposes.

(4) to quantitatively characterize a system, so that the
effect of changes in some other factor can be quantified.

(5) to provide a lead to a mechanistic explanation of

joint action.

Iv. Debate Over the Best Reference Model for
Combined-action

Because synergism (and antagonism) are commonly

defined as a greater (or lesser) pharmacological effect for
a two-drug combination than what would be predicted

for “no interaction” from the knowledge of the effects of
each drug individually, their definitions critically de-

pend upon the reference model for “no interaction.” It is
our view that there are only two reference models that
deserve extensive consideration. The first, and our pref-
erence, is Loewe additivity, which is defined by Eq. 6. A
specific model for Loewe additivity that assumes the Hill

equation, Eq. 2, for the concentration-effect model for

each drug individually, is Eq. 13.

D1 D2

I E 1/rn�’

IC50,1( E)
\ECOfl -

Note that Eq. 13 is equivalent to Eq. 5 with the third
right-hand term, the interaction expression, dropped.
Also note that Eq. 13 is merely the Loewe additivity

model, Eq. 6, with the substitution of the definition of

IDx for the Hill model, Eq. 7, for both drugs. This deriva-
tion for a specific Loewe additivity model follows the guide-

lines of Berenbaum (1985), and the examples of Hewlett
(1969) and Stih.nel (1992c). The additivity reference con-

cept was first mentioned by Frei (1913) and was first
defined formally by Loewe and Muischnek (1926). The

Loewe additivity reference is the diagonal Northwest-

Southeast line in isobolograms offigures 4, 5, 6, and 8 and
is a key part of the classical isobologram approach (Loewe
and Muischnek, 1926; Elion et al., 1954; Gessner, 1974).

The simplest intuitive explanation of the concept of
Loewe additivity is the following sham experiment: an

aliquot of a solution of drug 1 from a tube is poured into

a second tube and then diluted with an appropriate

solvent. When these two preparations are falsely labeled
as different agents and their combination is examined,

the result will be Loewe additivity. [Gennings et al.
(1990) experimentally illustrated and verified this con-

cept by examining the loss of righting reflex of mice
treated with the combination of sodium hexobarbital

with itself.] Thus, by definition, one agent is noninter-

active with itself. Advocates of the Loewe additivity ref-

erence for no interaction use this sham study ofone drug
with itself as a litmus test to invalidate other reference

models (e.g., Berenbaum, 1981). From this logic, Loewe

additivity implies that each of two drugs act similarly,
presumably at the same site of action, differing only in

potency. However, Eq. 6 is less restrictive than this
narrow interpretation. The constraint of Eq. 6 can be

obeyed for two drugs with different concentration-effect
slopes, (e.g., Eq. 13) that presumably would not act at
the same site. In fact, each of the two drugs in a combi-
nation could follow different concentration-effect func-

tions and still obey Loewe additivity, Eq. 6. This flexi-

bility is considered a weakness, with no theoretical

justification, by opponents of the Loewe additivity refer-
ence [Greco et al., (1992)]. They contend that the rare

observation of Loewe additivity in real complex experi-
mental systems is only fortuitous and does not lead one

to any mechanistic conclusion.
The strongest advocate of approaches based upon the

Loewe additivity reference has been Berenbaum (1977,
1978, 1981, 1985, 1988, 1989). Ofthe approaches eval-

uated in our review, the following use the Loewe addi-
tivity reference: isobologram by hand; interaction index

of Berenbaum (1977); median-effect method of Chou
and Talalay (1984); mutually exclusive model method of
Berenbaum (1985); bivanate spline fitting (SUhnel,
1990); parametric response surface approaches of Greco

[13] et al. (1990) and Weinstein et al. (1990); approach of
Gessner (1974); parametric response surface approach of
Greco and Lawrence (1988); and the use ofthe multiva-
nate linear logistic model (Carter et al., 1983, 1986,
1988; Brunden et al., 1988). The concepts of similar joint

action (Bliss, 1939), simple similar action (Plackett and
Hewlett, 1952), and concentration (dose) addition (She!-
ton and Weber, 1981) are all consistent with Loewe
additivity, as defined by Eq. 6. However, as discussed

above, Loewe additivity also includes cases not consis-
tent with these more restrictive concepts.

In our view, the most convincing argument in favor of

the use of the Loewe additivity model, Eq. 6, as a uni-
versal reference to define “synergism” and “antago-

nism,” is that it can best survive criticism. With the
possible exception of Bliss independence, a!! of the other

candidate reference models can be fatally wounded from
well aimed attacks; whereas, the Loewe additivity
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FIG. 1 1. Hypothetical concentration-effect curves for two drugs to

demonstrate a logical inconsistency for approaches to assess drug

synergism based upon the assumption of Bliss independence, Eq. 11

or Eq. 14, as the “no interaction” reference model.
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model, although not completely unscathed, is still stand-

ing after the smoke of battle clears. The Loewe additiv-
ity reference model, by definition, yields the intuitive

correct evaluation of the sham combination of one drug

with itself to be Loewe additivity (or as preferred by

Berenbaum, 1981, “no interaction”). The Loewe additiv-

ity reference model is, in fact, merely a reasonable as-

sumption. The interpretation of an assessment of Loewe

additivity, Loewe synergism, or Loewe antagonism is, in
general, free of mechanistic restrictions and imp!ica-

tions. [In principle, the mathematical models and pa-
rameters of specific biological systems can be mapped to

empirical combined-action models and parameters to
facilitate a mechanistic interpretation of a combined-

action analysis, but work on such mappings is in its
infancy (e.g., Bravo et a!., 1992; Jackson, 1993).] From a
response surface perspective, the Loewe additivity
model, Eq. 6, can be adapted to yield many useful em-

pirical models of combined-action, such as Eq. 5.
In our view, the only other major contender for a

universal reference of noninteraction (worthy of the sil-
ver medal) is Bliss independence, Eq. 11, or its equiva-

lents. Eq. 12 is a specific Bliss independence model that
assumes that the Hill model, Eq. 2, is an appropriate

concentration-effect model for each drug individually.

Bliss independence implies that two agents do not phys-

ically or chemically or biologically cooperate; i.e., each

agent acts independently of the other. Berenbaum
(1981) describes an interesting hypothetical experiment

that provides an intuitive feel for independently acting
agents. His thought experiment involves randomly
throwing either bushels of nails or pebbles or both at a

collection of eggs. None of the causal units, nails or
pebbles, cooperate with each other in the cracking of an
egg, an all-or-none phenomenon. But rather, each causal

unit has a certain probability (different for nails or peb-

bles) of hitting an egg, and the cumulative damage is
merely the result of correctly combining probabilities.

The Bliss independence reference model has an intu-
itive, theoretical basis: the concept of noninteraction; it

has a simple general formula, Eq. 11. Testing of the
model usually requires frugal experimental designs, and
many specific approaches for interaction assessment in-

corporate it. These approaches include: the fractional
product method ofWebb (1963); the method of Valeriote
and Lin (1975); the method ofDrewinko et al. (1976); the
method of Steel and Peckham (1979), Mode I; and the

method of Prichard and Shipman (1990). Synonyms for
Bliss independence include: independent effects, inde-
pendent joint action (Bliss, 1939); independent action

(Plackett and Hewlett, 1952); response (effect) addition

(Shelton and Weber, 1981); effect summation (Gessner,
1988); and effect multiplication (Berenbaum, 1981).

[Note: if Eq. 11 is recast in terms of the fraction of
possible effect, with subscripts referring to specific con-
centrations of agent 1, agent 2, and the corresponding

combination of agents 1 and 2, then Eq. 14 is the result.

This equation is analogous to the common formula for

the combination of probabilities (e.g., Larson, 1982).]

fa12 = fa1 + fa2 - fcz1fa2 [141

Gessner (1974; 1988) offered a philosophical argument

against the Bliss independence model: he questioned

whether, given the high degree of integration of a living

organism, the action of an agent on one receptor type,

target organ, or system can ever be envisaged as not

altering to some degree the responsiveness ofother recep-

tors, organs, or systems to a simultaneously present sec-

ond agent. Certainly, complex systems with extensive

positive and negative feedback pathways at all levels of

biological organization are ubiquitous and are the chief

targets of drug therapy (Jackson, 1992). Most examples

oftheoretical systems that follow the Bliss independence
model are relatively simple, such as single enzymes (e.g.,
Webb, 1963) and simple biochemical pathways (e.g.,

Jackson, 1991).
Gessner (1988) also mentioned that he had never seen

a published isobologram for the 50% effect level for

quantal data in which an isobol reasonably followed the
Bliss independence model throughout the whole curve.

In contrast, P#{246}chand coworkers have reported several

examples ofBliss independence (e.g., Poch,1990; P#{246}chet

a!., 1990a, b, c; POch, 1991; P#{246}ch,1993). An objective

survey would be necessary to estimate the frequency of

occurrence of exact Bliss independence for combinations

of agents in real experimental work. However, just as
with Loewe additivity, it is also our impression that pure
Bliss independence in complex systems is a rare occur-S

rence.
The most convincing arguments against the Bliss in-

dependence model as a universal reference model for
noninteraction use the pair of concentration-effect

curves in figure 11 (Greco, 1989). [Similar figures and
arguments were previously published by Grindey et al.

(1975) and Berenbaum (1977, 1981)]. Figure 11 includes

individual simulated data points and simulated concen-

tration-effect curves for two different hypothetical inhib-

itory drugs. Suppose that 0.5 �tM ofdrug 1 results in 95%

soc
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survival of cells in a typical growth inhibition experi-
ment, likewise for drug 2. From Eq. 11, one would pre-

dict that the noninteractive response for 0.5 .tM of drug
1 plus 0.5 �M of drug 2 would be about 90% survival.
Therefore, if one found that this drug combination elic-
ited, let’s say, 40% survival of cells, one would conclude

strong, undeniable Bliss synergism. However, note in
figure 1 1 that either 1 �tM of drug 1 alone or 1 p.M of drug
2 alone brings the survival of cells down to 30%. There-

fore, a total of 1 .tM of the hypothetical combined drug

preparation elicits less of a cell kill than 1 j.tM of either
drug alone, yet one would conclude strong Bliss syner-

gism under methods based upon the Bliss independence

reference assumption, Eq. 11.
Figure 1 1 can also be used to illustrate the paradox of

the sham combination of one drug with itself. Let’s say
that a drug preparation is divided into two tubes, and
then each tube is treated as if it contained a different
drug. The two concentration-effect curves in figure 11,
which are in fact identical, would result. Using the same
logic as used in the beginning ofthe previous paragraph,

one would conclude that the drug is Bliss synergistic
with itself. This absurd conclusion is inconsistent with

the intuitive definitions of”synergism,” “additivity,” and

“antagonism” used by many researchers.
It is our view that these two aspects of the same basic

criticism illustrated by figure 11 are persuasive enough
to relegate Bliss independence to second place for the

optimal routine reference for defining “synergism” and
“antagonism.” However, proponents of the Bliss inde-
pendence reference have several counterarguments: (a)
when concentration-effect curves are steep, such as in
figure 11, the joint effects of a Bliss synergistic combi-

nation may be disappointingly small relative to the ef-
fects of each drug individually, but this result is neither

paradoxical nor absurd; (b) a drug with a steep concen-

tration-effect curve is Bliss synergistic with itself(this is
a fundamental tenet of Biology); (c) the sham combina-

tion of a drug with itself is a silly experiment, and the
so-called paradox is, at worst, a minor exception to a
generally useful concept; (d) ifit is known that two drugs
in a combination act at the same biochemical site, a
relatively rare situation, then their actions cannot be

independent, and one shouldn’t use the Bliss indepen-
dence reference. Figure 1 1 is merely an illustration of
the extreme case of this situation, in which the two dose

response curves are identical.
Our rejoinders to these counterarguments include: (a)

the search for synergy will often involve agents, drugs,
and preparations with multiple, complex, possibly un-
known mechanisms of action, and therefore, guidelines
for the assessment of interaction must not depend upon
knowledge of mechanisms of action; (b) a general con-

cept must encompass rare cases; (c) the first argument
illustrated by figure 11 did not require that the two

drugs be the same or that they have similar sites of

action, but only that they have steep concentration-

effect curves; (d) a reference model that can result in the
counterintuitive result, that a synergistic combination is

less effective than its components applied individually,

is not useful.
As pointed out by Berenbaum (1981), the fundamental

explanation underlying both forms of the above paradox
involves the functional form of the individual concentra-

tion-effect curves. Only when each individual concentra-

tion-effect curve follows Eq. 4, that for exponential de-
dine with dose, will there be no paradox: Loewe

additivity will be concluded from the sham combination
of one drug with itself. Eq. 15 would be the resulting

equation for no interaction oftwo drugs, from combining

either Eq. 4 and Eq. 6 (Loewe additivity) or Eq. 4 and Eq.
1 1 (Bliss independence). Concentration-effect curves

steeper than the exponential model will lead to the
above paradox; whereas, concentration-effect curves less

steep than the exponential model will lead to an opposite
paradox. (Note: the data points and curves in figure 11
were simulated with Eq. 2 with Econ = 100, IC50 = 0.86
pM, and m = -5.6, resulting in relatively steep curves.)

E = Econ exp(aD1)exp(bD2) = Econ exp(aD1 + bD2) [15]

However, we disagree with Berenbaum’s inference

from the above logic that the Bliss independence model,
Eq. 11, is appropriate for describing the joint action of a
combination only when each of the component drugs

have exponential concentration-effect curves, Eq. 4. Be-
renbaum (1981) argues that in order for molecules of
drug 1 to act independently from molecules ofdrug 2, all

molecules of drug 1 must act independently of all other
molecules of drug 1, resulting in an exponential concen-

tration-effect curve for drug 1; all molecules of drug 2
must act independently of all other molecules of drug 2,

resulting in an exponential concentration-effect curve

for drug 2. This argument can be refuted by a specific
counterexample from Jackson (1991). Jackson (1991)
modeled a hypothetical biochemical pathway consisting

of: a substrate, A, being converted to substrate B by

enzyme 1; substrate B being converted to substrate C by
enzyme 2, and to substrate D by enzyme 3; a competitive
inhibitor of enzyme 1; and a competitive inhibitor of

enzyme 2. When the enzyme kinetic parameters are
adjusted to give a high sink capacity (the ratio of the

sum of the maximal velocities of enzymes 2 and 3 di-
vided by the maximal velocity of enzyme 1), exact Bliss

independence of the effects of the two inhibitors can be

achieved. The individual concentration-effect curves for
the two inhibitors followed the Hill model, Eq. 2, and
thus were nonexponential, yet the specific Bliss indepen-
dence model, Eq. 12, fit the data perfectly over a wide
range of inhibitor concentrations (Bravo et al., 1992). In

addition, POch (1991) provides several specific examples
ofBliss independence found with real laboratory data, in
which the individual concentration-effect curves follow

the Hill model, Eq. 2 or 3. Thus, this specific argument
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of Berenbaum against the independent effects model is

questionable.
Although we prefer Loewe additivity to Bliss indepen-

dence as a universal reference for the lack of “syner-
gism” or “antagonism,” we must concede that the Bliss

independence camp has successfully resisted total de-

feat. It is clear that adherents of Loewe additivity and
Bliss independence have heard all of the most compel-
ling arguments for and against each model and cannot

be persuaded to switch allegiances. Thus, the debate can
progress no further, and we join in the recommendation

that both models be accepted as legitimate empirical
reference standards for “no interaction.” It must be em-

phasized, however, that neither model is well suited for
unambiguously indicating mechanistic explanations for

the joint action of agents in complex systems, such as
whole cells, single organisms, or populations of organ-

isms. In order for researchers to make mechanistic con-

clusions for a specffic experimental system, the corre-
spondence between empirical concepts-such as Loewe

synergism or Bliss antagonism-and theoretical mecha-

nisms must be derived. This is a rich source for future
research initiatives.

The shapes of isobols for Loewe additivity and Bliss

independence will, in general, be very different. Figure

12 shows a set of isobols at the 50% effect level for the

specific Bliss independence model, Eq. 12, which incor-
porates the Hill model, Eq. 2, for the individual concen-

tration-effect curves. The shape of the isobols is deter-

mined only by the two slope parameters, m1 and m2;

these are listed in figure 12 next to each respective

isobol. [Note: Similar figures and observations are pro-
vided by Gessner (1988) and P#{246}chet al. (1990c)]. When

the slope parameters are the same for the two drugs, the

isobols are symmetrical; when they are different, the

0

0

FIG. 12. Normalized isobols at the 50% effect level, for the Bliss

independence model, Eq. 12, for various values of � and m2, which

are set next to each corresponding curve. A single m indicates that

m1 = m2 = m. The thick diagonal line is the line ofLoewe additivity.

isobols have an S shape and may cross the Loewe addi-

tivity diagonal. Slope parameters that are large in mag-
nitude result in Loewe antagonism; whereas, slope pa-

rameters that are small in magnitude result in Loewe
synergism. It may be useful to superimpose the pre-

dicted Bliss independence model on both 2-D and 3-D
representations of two-drug combination concentration-

effect surfaces. If the superimposed Bliss independence
curves lie close to the data, then it may be useful to infer,

after making necessary assumptions, that the two drugs

may, in some sense, act independently.

Four other candidates for a universal reference for no
interaction will be briefly described and critiqued below.

The first is Eq. 16, that for effect addition, and the

second is almost the same, Eq. 17, that for fractional

effect addition. [Note: Some authors call Eq. 1 1 and 14
the effect addition model (e.g., Shelton and Weber,
1981).]

E12 E1 + E2

fa12 fa1 + fa2

[161

[17]

According to Eq. 16, if the effect for a particular concen-

tration of drug 1 was 20 units and that for a particular

dose of drug 2 was 30 units, then the no interaction
prediction would be 50 units. As pointed out by Beren-

baum (1981), this intuitive definition of no interaction
may underlie the claims of synergism and antagonism

for which authors provide no explicit definitions. Eq. 16
is not easily applied to the common case in which the
drugs have some maximum possible effect, because if E1

and E2 are both reasonably large, 60 and 70, let’s say,

and close to the maximum possible effect, 100, let’s say,
then E12 would be 130, greater than the maximum pos-
sible effect, resulting in an inconsistency. For one re-

stncted situation, when each of the individual con-

centration-effect curves are linear and increasing,

Berenbaum (1981) showed that Eq. 16 is consistent with
the Loewe additivity model, Eq. 6.

A somewhat more credible variation of effect addition,
Eq. 16, is fractional effect addition, Eq. 17. According to

Eq. 17, if the fraction of possible effect affected for drug
1 is 0.20 and the fraction affected for drug 2 is 0.30, then
the no interaction prediction would be 0.50. Eq. 17 is

also easily eliminated as a candidate for a universal
standard by considering an example in which the frac-
tional effects are both large, let’s say, fa1 = 0.60 and
fa2 = 0.70. Because fa12 has an upper limit of 1.0, the

sum offa1 + fa2, which equals 1.30, leads to an incon-
sistency. In addition, paradoxes regarding synergy, sim-

ilar to those described above for the Bliss independence
reference model, can be contrived using figure 1 1. How-

ever, Eq. 17 is valid or approximately valid under 5ev-
era! restricted situations. The first is the case in which

fa1 and fa2 are both very small. Then Eq. 17 will approx-
imate Eq. 14, that for Bliss independence, because the
product term will be very small (P#{246}ch,1991). The second
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is independent effects for quantal responses, in which

the susceptibilities of the individual organisms to the

two drugs are completely negatively correlated (any or-
ganism that is affected by drug 1 will not be affected by

drug 2, and vice versa) (Plackett and Hewlett, 1948).
The third is the joint effects of two inhibitors in a met-

abolic network in which two converging reactions that

lead to a single product are both inhibited (Jackson,
1991). Note that these latter two examples of restricted

conditions both impose upper limits upon the magni-
tudes offa1 and fa2; their sum never exceeds 1.0.

Another candidate for a universal reference for no

interaction is the mutually nonexclusive model of Chou

and Talalay (1984), Eq. 18. An alternate form is Eq. 19,
which is equivalent to Eq. 5, our model for drug inter-

action, m = m1 = m2 and a = 1. As emphasized by
Chou and Talalay (1984), their mutually nonexclusive
model is equivalent to the Bliss independence model

only under restricted conditions; specifically, when the
median-effect model (equivalent to Eq. 1 or Eq. 2) ade-

quately describes the individual concentration-effect

curves for both drugs and m1 = m2 = -1 for monotoni-

cally decreasing curves [or m1 = m2 = 1 for monotoni-

cally increasing curves, as preferred by Chou and Tala-

lay (1984)1. They further conclude that the Bliss
independence model is inadequate under conditions in
which Im � * 1. However, it . is our view that it is the
mutually nonexclusive model that is suspect. Only an

abbreviated general derivation ofthis model, for the case
of multiple mutually nonexclusive inhibitors of a single

enzyme, is provided in Chou and Talalay (1981). A spe-

cific derivation, for the case of two mutually nonexclu-
sive noncompetitive inhibitors, is provided in Appendix
A. An equation equivalent to Eq. 12, not to Chou and
Talalay’s mutually nonexclusive model, is the result.

Because their model is of questionable validity, we feel

that it is not appropriate as a universal reference. An

extensive discussion of the median-effect approach to
the assessment of drug interaction is provided in Section
V.G.

Ic \lJrn /i� \IJrn I.e \1/m11a121 11a11��;) =�;) +�;

ffaifa2\1/m
+1

\fulfu2

D1 D2 D1D2

Dm1 Dm2 Dm1Dm2

Econ( + IC502 � IC50,11C50,2)

ID1 D2 D1D2 m

E = �IC50,1

1 + �IC � IC50,2 � IC50,1IC50,2)I D1 D2 D1D2

A final candidate for a universal reference for no in-

teraction is the Mode II additivity model of Steel and
Peckham (1979). A compact way to express the model is

Eq. 20. An equivalent form is provided by Kodell and

Pounds (1991).

D2 ID[X_fa(D1)],2 [20]

Eq. 20 can be used to construct an isobol for D2 versus D1

for a particular X% inhibition. To do this, D1 is varied,
and the fraction affected (% inhibition) for the particular

D1 is calculated and subtracted from the target X%.
Then, the D2 needed to achieve this resulting difference

X% is determined. Interestingly, this reference model

will give the correct answer of no interaction for a sham

combination of drug 1 with itself; the isobol will be a
straight diagonal NW-SE line, such as in figure 6. How-

ever, Eq. 20 is not equivalent to the Loewe additivity
model, Eq. 6. This will be shown and discussed in detail
in Section V.F. A fatal flaw of the Mode II reference

model is that it has a polarity; i.e., for two different

drugs, different isobols will be drawn, depending upon
the arbitrary assignment of drug 1 and drug 2 (Beren-

baum, 1981).
The issue of the preferred reference model for no in-

teraction has been recently debated in the antiviral lit-

erature by Suhnel (1990; 1992a) and Prichard and Ship-
man (1990; 1992). We endorse Suh.nel’s advocacy of the

Loewe additivity model, Eq. 6 over Prichard and Ship-
man’s advocacy of Bliss independence, Eq. 11 or Eq. 14.

However, this is mainly because of personal preference

and because our specific response surface models incor-
porate Loewe additivity. We do not endorse Suhnel
(1990, 1992a) and Berenbaum’s (1981) main argument

that the Bliss independence model is only valid for the
case in which each individual concentration-effect curve
follows an exponential concentration-effect curve.
Rather, we feel that the paradoxes illustrated with fig-

ure 11 are sufficient to place Bliss independence in sec-
ond place for the competition for a universal null refer-

ence model.
In summary, we advocate the use of the Loewe addi-

tivity model, Eq. 6, as the best choice for a universal

standard reference for defining “synergism” and “antag-
onism.” Adaptations of Eq. 6 can be used to derive con-
centration-effect response surface functions, such as Eq.

1181 5� containing interaction parameters, such as a. To the
I J best ofour knowledge, response surface models for agent

interaction that incorporate Bliss independence have
not been developed. However, some ideas ofAshford and
Smith (1964) and Ashford (1981), which have been re-
cently reviewed by Unkelbach (1992), have the potential
to lead to the development of such models.

V. Comparison of Rival Approaches for
Continuous Response Data

There are many published methods for assessing drug
interactions. We have carefully chosen 13 of them for

continuous response data to compare in a head-to-head
competition. (Section VI includes a comparison of three
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rival approaches for discrete success/failure data.) Some separate graphs are drawn, usually by hand with a

methods consist of general guidelines, whereas others French curve or a straight edge, one for drug 1 and the

include very specific recipes. This set of 13 methods was other for drug 2. Each graph has a family of concentra-

chosen because, as a group, they have a high frequency tion-effect curves, one curve for each level of the other
of use, have a high relative impact on biomedicine, have drug. The IC50 (or Dm, ID50, ED50, LD50, etc.) values are

many similarities and differences, provide a good sum- then determined, by eye, for each curve on both graphs.
mary of the practical history of drug interactions, in- From Figure 13, six IC50 values can be determined,

dude good examples ofthe pleasures, pitfalls, controver- three from the left panel and three from the right panel.
sies and paradoxes inherent in the field, and point (An IC50 value cannot be determined for six of the con-

toward the future of interaction assessment. Notewor- centration-effect curves, because for each of them, the

thy additional approaches not extensively evaluated in measured response at the first drug concentration is

this review include the ones by P#{246}ch(1990b), Kodell and already below 50% ofthe maximum measured response.)

Pounds (1985), Tallarida et al. (1989), Kelly and Rice From the left panel, the IC50 values for drug 1 are
(1990), and Laska et al. (1994). The 13 rival approaches recorded along with the level of drug 2 used to generate
will be compared in two ways: (a) Theoretical aspects, the respective concentration-effect curves. Then, these

both positive and negative, of each approach will be IC50 values for drug 1 are divided by the IC50 value for
listed and discussed. Although a large number of these drug 1 in the absence of drug 2, and the levels of drug 2

comments will be summarized from previous work of are divided by the IC50 for drug 2 alone. The resulting
other reviews, there will be many new comments. 5ev- data points, (D1/Dm1, D�-,JDm2), are the solid points on
eral of the theoretical comments will refer back to Sec- the left isobologram of figure 14. The analogous proce-

tions I to N. (b) An abbreviated recipe for the applica- dure is performed on the concentration-effect curves of

tion of each approach to a common data set, for an the right panel of figure 13, resulting in the open points
inhibitory drug, will be described. For a complete recipe in the left panel of figure 14. In the isobolograms of

ofeach approach, the reader is encouraged to consult the figure 14, each data point is labeled (a-l) to correspond to

original references. Each approach will then be applied the curve in figure 13 from which it was derived. Occa-

to a common data set. Pitfalls, problems, and results will sionally, smooth curves are drawn through points on an

be listed and compared. isobologram, possibly with a French curve; occasionally,
The common data set consists of the 38 data points in straight lines are drawn connecting the points, and oc-

columns 2 to 4 of table 3, simulated with the approach casionally, no curve is drawn at all. In figure 14, curve W
described completely in footnote a of the table. Briefly, is not a curve drawn by hand, but rather is the theoret-

this data set was simulated with Eq. 5 as the structural ically correct isobol simulated with Eq. 21 (an isobol

model, with different slope parameters for the two drugs model that assumes that Eq. 5 is appropriate for the

(m1 = -1, m2 = -2) and with a small amount ofsynergism entire concentration-effect surface), for the 50% level
(a 0.5). The data contains normally distributed ran- and for a = 0.5. As explained in Section III and shown in

dom relative errors; the coefficient of variation is 10%. A figures 4, 5, 6, and 8, the diagonal NW-SE line is the line

simulated Monte Carlo data set was used, as opposed to ofLoewe additivity; points below the line indicate Loewe

a real data set, because: (a) the “true” answer is known, synergism and points above the line indicate Loewe an-
so there is an absolute reference for making comparisons tagonism.

between rival approaches; and (b) specific characteris-
tics can be imbedded in the data set to illustrate specific
differences among rival approaches. To the best of our
knowledge, this approach to making comparisons among
rival methods to assess agent interaction has not been

used by groups other than ours (Syracuse and Greco,

D1

D 1
-�-- = X�l(l/2rn + 1/2rn. ) [21]

ICx,2 � � -�?.�- 100 X ‘ 2

ICx,1 X

1986; Greco, 1989).

A. Isobologram by Hand In principle, any constant effect level can be used for

The graphical isobologram approach, performed by an isobologram analysis, notjust the 50% level. Because
hand, with the aid of pencil, ruler, graph paper, and most of the concentration-effect curves from figure 13
possibly French curve, has its origins in the work of did not yield a Dm value, IC80 (D80) values were also

Fraser (1870-1871; 1872), Loewe (Loewe and Muischnek, determined. The right panel of figure 14 is the isobolo-
1926; Loewe, 1928, 1953, 1957), and Elion, Singer, and gram analysis of the D80 values.
Hitchings (1954). It is a general approach and has many If one only used the Dm isobologram from figure 14,
interpretations and variants. Our interpretation is de- one would conclude that the experiment should be re-
scribed here. The first step is to plot the measured data, peated. If one also used the D80 isobologram from figure

such as those found in columns 2 to 4 of table 3, as 14, one would conclude that the interaction between
concentration-effect curves, such as in figure 13. Two drug 1 and drug 2 is Loewe synergistic.

SEARCH FOR SYNERGY 349
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TABLE 3

Data set, with a continuo us response va riable, used for com parison ofrival data analysis a pproaches, and the results from four approaches

Data
point

number
D1 D2

Measured
effect*

Predicted effect

from Bliss

independence
modelt

Conclusion from

fractional product

comparisons

Conclusion from
V and L system�

Drewinko’s

ScOre)

Predicted effect

from Loewe

additivity model9[

Berenbaum’s

interaction

index, I#

Conclusion from
Loewe additivity

comparison**

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

0

0

0

0

0

0

0

0

2

5

10

20

50

2

2

2

2

2

5

5

5

5

5

10

10

10

10

10

20

20

20

20

20

50

50

50

50

50

0

0

0

0.2

0.5

1

2

5

0

0

0

0

0

0.2

0.5

1

2

5

0.2

0.5

1

2

5

0.2

0.5

1

2

5

0.2

0.5

1

2

5

0.2

0.5

1

2

5

106

99.2

115

79.2

70.1

49.0

21.0

3.83

74.2

71.5

48.1

30.9

16.3

76.3

48.8

44.5

15.5

3.21

56.7

47.5

26.8

16.9

3.25

46.7

35.6

21.5

11.1

2.94

24.8

21.6

17.3

7.78

1.84

13.6

11.1

6.43

3.34

0.890

55.0

48.6

34.0

14.6

2.66

52.9

46.9

32.7

14.0

2.56

35.6

31.5

22.1

9.44

1.72

22.9

20.3

14.1

6.07

1.10

11.3

9.96

7.47

3.20

0.583

BANT

BANT

BANT

BANT

BANT

BANT

BANT

BSYN

BANT

BANT

BANT

BANT

BSYN

BANT

BANT

BANT

BANT

BANT

BANT

BANT

BANT

BANT

BSYN

BANT

BANT

INT

SUB

SUB

SUB

SUB

SUB

SUB

BSYN

SUB

SUB

SUB

SUB

BSYN

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

BSYN

SUB

SUB

21.3

0.2

10.5

0.9

0.55

3.8

0.6

-5.9

2.9

0.69

11.1

4.1

-0.6

1.66

1.22

1.9

1.3

3.2

1.71
0.74

2.3

1.14
-1.04

0.14
0.307

99.2
99.2

99.2

94.6

77.4

47.9

19.6

4.00

81.7

64.9

48.4

32.2

16.1

74.3

61.1

40.6

18.2

3.94

58.3

48.2

33.6

16.5

3.85

43.5

36.5

26.7

14.4

3.72

29.2

25.1

19.4

11.6
3.47

15.0

13.4
11.1

7.66

2.93

1.10

0.713

1.10

0.901

0.895

0.944

0.978

0.811

1.02

0.911

1.13

0.968

0.818

0.836

0.878

0.809

0.844

0.899

0.751
0.698

0.898

0.824
0.613
0.539

0.496

LANT

LSYN

LANT

LSYN

LSYN

LSYN

LSYN

LSYN

LANT

LSYN

LANT

LSYN

LSYN

LSYN

LSYN

LSYN

LSYN

LSYN

LSYN
LSYN

LSYN

LSYN
LSYN
LSYN

LSYN

Totals BSYN = 3

BANT=22

BSYN = 3

SUB=21

INT = 1

mean = 2.59

S.D.=5.1
S.E. = 1.02

LSYN =21

LANT=4

* The “Measured Effects” were generated by: (a) calculating ideal data with Eq. 5 with parameters, Econ = 100, IC501 = 10, IC50,2 = 1,

m1 = - 1, m2 = -2, a = 0.5; (b) generating normally distributed random numbers with a mean ofO and a variance of 1 (Box and Muller, 1958);

(c) calculating relative errors by the equation, error = [(normal random number)/10] x [ideal effect]; (d) adding the errors to the ideal effects

to generate simulated data with relative error (a coefficient of variation of 10%).

t Each measured effect from column 4 was divided by the average of the control effects (107) to yield a fraction of control effect, then the

fractional effects for the appropriate D1 and D2 were multiplied, then this product was multiplied by the average of control effects to yield

the entries in column 5.

:1:For the fractional product approach to the assessment ofdrug interaction (Webb, 1963), when the entry in column 4, the measured effect,

is greater than the entry in column 5, the predicted effect, then Bliss antagonism (BANT) (less inhibition than predicted) is recorded; when

the column 4 entry is less than the column 5 entry (more inhibition than predicted), then Bliss synergism (BSYN) is recorded.

§ The Valeriote and Lin (1975) system differs from the Webb approach by further subdividing the Bliss antagonism into 3 categories,

subadditivity (SUB), interference (INT), and antagonism (ANT). Details are in the text.

II Column 8 is the difference between columns 4 and 5. From the mean and standard error of the mean for this difference score (Drewinko

et al., 1976) one would conclude significant antagonism (P < 0.05). See the text for details.

I The predictions in column 9 are based on the best fit ofEq. 13 to the data points for which drug 1 and drug 2 were not simultaneously present,

i.e., the data in columns 2-4, rows 1-13, and then the simulation of Eq. 13 with these 5 best fit parameters for all ofthe 38 data points.

# Berenbaum’s interaction index (I) is calculated from Eq. 22, with the IDEs for drug 1 and drug 2 calculated from Eq. 7 with the parameter

values from the best fit of Eq. 13 to the first 13 data points.
** When I > 1, then Loewe antagonism (LANT) is concluded; when I < 1, then Loewe synergism (LSYN) is concluded.
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FIG. 13. Hand-drawn (with the aid of a French curve) concentra-

tion-effect curves for the data in columns 2 through 4 from table 3.

The IC50 and IC80 values for each curve are indicated by short

horizontal lines intersecting the curves.

FIG. 14. Isobolograms made from IC50 values (left panel) and 1C80
values (right panel). Line x in each panel is the Loewe additivity line.

The data points in each panel are labeled with a lowercase letter that

corresponds to the appropriate curve from figure 13. The solid points

were derived from the left panel of figure 13, and the open points

from the right panel. Curves W in each panel of figure 14 are the

theoretically correct isobols and were simulated from Eq. 21 with

parameters: Econ = 100, IC50,1 10, IC50,2 = 1, m1 = -1, m2 = -2, a =

0.5.

The advantages of the isobologram by hand method

include:
(a) the null reference model for no interaction is the

Loewe additivity model, Eq. 6, which was given support
in Section N and is our preferred universal standard.

(b) the approach is simple, flexible, and to many users,

intuitive.
(c) equipment to run the approach is inexpensive, and

expert statistical advice and/or the learning of some
modern statistical ideas are unnecessary.

(d) the approach is famous and widely accepted.

(e) variants of the basic method exist that add more

statistical rigor (e.g., Gessner, 1974; Gennings et al.,
1990) and that provide quantitative measures of inter-

action intensity (e.g., Hewlett, 1969; Elion et al., 1954;
P#{246}ch,1980).

(f) many newer, more rigorous methods have the ba-
sic isobologram approach as their underlying basis (e.g.,

the method of Berenbaum (1985), the nonparametric
bivariate spline fitting approach of Suhnel (1990), and

the parametric response surface approach of Greco et al.

(1990).

The disadvantages ofthe isobologram by hand method
include:

(a) the method lacks many of the good characteristics
of objective statistical procedures. It lacks the theoreti-

cal framework to allow inferences with a specified de-

gree of certainty to be made from an experiment to the
true situation. It lacks the option of objectively weight-

ing more precise measurements greater than less pre-

cise ones.

(b) the basic isobologram method lacks a summary
measure of the intensity of interaction.

(c) for the isobologram method, each concentration-
effect curve should have data that encompasses the IC�

level. When this is not the case, such as with curves d-f,
j-l in figure 13, for the 50% effect level, the data for those

curves is wasted. If enough data is wasted, then the

experiment may have to be rerun.
(d) in general, the basic isobologram method requires

a relatively large amount of data. When data is expen-
sive, combination experiments may become prohibitive.

(e) graphs of a measured dependent variable vs. an

experimentally fixed independent variable, often fruit-

fully assumed to be recorded without error, are appeal-

ing, because they represent directly the actual experi-
ment. Fitted curves can be superimposed upon actual

observed data points to provide a good indication of the
goodness of fit of the data by the curves. Isobolograms
are not such graphs; no observed data points appear on
them. Both the X- and Y-variables in isobolograms are

subject to error of a complex, unknown distribution.
(f) the scatter of points in an isobologram may lead

the researcher to a false conclusion of Loewe synergism
in some regions and Loewe antagonism in other regions

of the concentration-effect surface. Such a conclusion

might be reached with the isobologram in the left panel

offigure 14.
(g) it may take a relatively long time to plot by hand

the required curves and to perform the required calcu-

lations.

(h) different data analysts are likely to plot the data

differently and thus arrive at different answers.

B. Fractional Product Method of Webb (1963)

This method is a very simple one. Eq. 11, that for Bliss
independence, is used to construct a set of predicted

fractional responses, fit12, as the product of the individ-
ual fractional effects, fizz and lit2, for specific concentra-

tion combinations. Then, optionally, the results can be
re-expressed as responses on the original response scale
by multiplying each fu12 by the control response, as was

done to calculate the entries for column 5 of table 3 for
the analysis of the 38-point common data set. For an
inhibitory drug, when the predicted response exceeds
the measured response, Bliss synergism is claimed;

when the measured response exceeds the predicted re-
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sponse, Bliss antagonism is claimed. Column 6 oftable 3
lists the conclusions for each of the 25 combination

points. There were 22 claims of Bliss antagonism and 3
claims ofBliss synergism. The overall conclusion is mod-

erate Bliss antagonism, seemingly different from the

conclusion of Loewe synergism from the isobologram

analysis.
The advantages of the fractional product method in-

dude:
(a) it is the simplest of all methods; it is very intuitive.

Calculations can be performed with pencil and paper;

thus, equipment and personnel to run the method are
inexpensive. The approach is famous and widely ac-

cepted.
(b) experimental designs can be very frugal; in princi-

pie, one can perform the experiment at single drug 1 and

drug 2 concentrations, and thus one minimally needs
only four data points to apply the method: (0, 0); (D1, 0);

(0, D2); and (D1, D2).

(c) variants ofthe fractional product method exist that

add some statistical rigor; e.g., the method of Steel and

Peckham (1979) and the method of Prichard and Ship-

man (1990).

The disadvantages include:

(a) the no interaction null reference model for the

fractional product method is the Bliss independence
model, Eq. 11, which in our view, is slightly inferior to

the Loewe additivity model, Eq. 6.

(b) the fractional product method is inconsistent with
the isobologram method. It is possible to arrive at the
opposite conclusion from that found with the isobolo-

gram method, as illustrated by the respective analyses
of our common data set.

(c) there is no objective quantitative summary mea-

sure of the intensity of synergism or antagonism. It is
not obvious how to combine results from several sets of

measurements.

(d) a frugal design may give a misleading result if the
pattern of interaction is different at different regions of

the concentration-effect surface.

C. Method of Valeriote and Lin (1975)

This method is very similar to the fractional product

method of Webb (1963). A predicted response is calcu-
lated from the Bliss independence null reference model;

e.g., column 5 in table 3. Then, just as with Webb’s
method, the observed and predicted responses are com-

pared. However, Vaieriote and Lin (1975) further sub-

divide the less-than-additive region into subadditive,
interference, and antagonism subregions. For an inhib-

itory drug, an interaction for a combination point is

called (a) subadditive, if the surviving fraction is be-
tween predicted additivity and the surviving fraction for
the more active drug, (b) interference, if the surviving

fraction for the combination is between the observed
surviving fractions of the two individual drugs, and (c)

antagonism, ifthe surviving fraction for the combination
is more than for the least potent drug.

The results from the application of the Valeriote and

Lin (1975) approach to the common data set are: 3 com-

bination points showed Bliss synergism, 21 points
showed subadditivity, and 1 point showed interference.
The conclusion is subadditivity.

The advantages and disadvantages of the Valeriote

and Lin (1975) method are essentially the same as of the
fractional product method of Webb (1963). The extra

subdivision of the less-than-additive region into three

regions may have merit.

D. Method ofDrewinko et al. (1976)

This approach is also similar to the fractional product
method ofWebb (1963). The predicted surviving fraction

is calculated from the Bliss independence model and
listed as in column 5 of table 3. Then, the predicted
surviving fraction is subtracted from the measured sur-
viving fraction for the combination points, and the dif-

ference scores are listed, such as in column 8 of table 3.
The scores are then used as data for a Student’s t-test for

the hypothesis that the true mean is equal to zero. For

the 25 combination points for the common data set, the
mean Drewinko score was 2.59, with a standard error of

1.02. There was significant Bliss antagonism, P < 0.05.
The advantages and disadvantages of the method of

Drewinko et al. (1976) are essentially the same as those

of the last two approaches. A difference is that this
method offers a summary measure of the intensity of
interaction, with an associated statistical indication of

the uncertainty in the measure. A disadvantage of the
mean Drewinko score is that it is not the statistical

expectation of any specific true parameter. In other
words, the mean Drewinko score will very much depend
upon which regions of the concentration-effect surface

are sampled. A statistic, such as the mean Drewinko

score, that depends heavily upon the design of the ex-

periment is not ideal.

E. Interaction Index Calculation ofBerenbaum (1977)

This method is the algebraic analog ofthe isobologram

by hand method. The general formula for the interaction
index, I, is Eq. 22, in which D1 and D2 are concentrations

of drug 1 and drug 2 in the combination, and ID�1,

ID�,2, are the predicted inhibitory concentrations of each
drug individually to give the observed effect of the com-

bination. The specific method of estimating ID�,1 and
ID�,2 �5 left to the researcher but is often done by hand
with pencil, graph paper, and possibly, French curve.

[22]

We applied the interaction index method to the common
data set by first fitting the first 13 data points with Eq.
13, that for Loewe additivity for two inhibitory drugs

352 GRECO ET AL.
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that both individually follow Eq. 2. The first 13 data
points include the control points plus the drug 1 alone

and drug 2 alone points. The data were fit with nonlin-
ear regression, weighted by the reciprocal of the square

of the predicted effect. (This weighting factor is appro-

priate for continuous data that have errors that are
normally distributed and proportional to the true re-

sponse. This error structure is common in biological
systems and was used to generate the common data set,

as described in the legend of table 3.) The 5 parameter
estimates were: Econ = 99.2 ± 5.2; IC50,1 = 9.52 ± 1.7;

IC50,2 = 0.966 ± 0.094; m1 = -0.989 ± 0.11; m2 = -1.93
± 0.13. Then, using Eq. 8, the specific form ofEq. 22 for

drugs that follow Eq. 2, and these 5 parameter esti-
mates, the interaction indices were calculated for the 25

combination points and listed in the tenth column of

table 3. When I > 1, Loewe antagonism is claimed; when
I < 1, Loewe synergism is claimed. The results of this

analysis are listed in column 11 oftable 3. There were 21

cases of Loewe synergism and 4 cases of Loewe antago-
nism. The overall conclusion is Loewe synergism, in
agreement with the isobologram by hand method, but in

apparent disagreement with the fractional product
method ofWebb (1963), the method ofValeriote and Lin
(1975), and the method of Drewinko et al. (1976).

The advantages and disadvantages of the interaction

index method of Berenbaum (1977) are similar to the
isobologram by hand method. The key advantages in-

elude:
(a) the null reference model is the Loewe additivity

model, Eq. 6.

(b) if the individual concentration-effect curves for

both drugs can be well characterized, then all of the
combination data can be used. This eliminates some of

the potential waste of data of the isobologram by hand
method. Also, in principle, the experimental designs can

be parsimonious.
The key disadvantages include:

(a) it is not obvious how to derive a good summary
measure of the intensity of interaction. If one merely

calculates a mean for all of the Is and then performs a
Student’s t-test with the null hypothesis that the true

interaction index is equal to 1, then the same criticisms

directed against the mean Drewinko score would apply
here.

(b) the analysis results are not as visually informative
as with the isobologram by hand method.

F. Method of Steel and Peckham (1979)

This approach has many similarities to the isobolo-

gram by hand approach but also several fundamental
differences. In addition to the original reference, the
approach is described well by Streffer and Miller (1984)

and by Calabrese (1991). A variant of the original ap-
proach developed by Deen and Williams (1979) has been

used extensively by Teicher and coworkers (e.g., Teicher
et al. 1991). First, reference curves for the Bliss inde-

pendence model, Eq. 11 (called Mode I additivity) and for

Mode II additivity, Eq. 20, are constructed for a partic-

ular effect level. An alternative equation for Mode II is
provided by Kodell and Pounds (1991), although it is

more common to describe the Mode II calculation with a

diagram (e.g., Steel and Peckham, 1979; Streffer and

Muller, 1984). Mode I and Mode II isobols for the 20%

survival level are shown for the analysis of the common
data set in figure 15. All calculations and graphs were

made with pencil, graph paper, and French curve. How-

ever, automated curve fitting computer programs for the

approach have been developed (Teicher et al., 1985). The

data points are the ID80 values estimated from families

oflog-linear concentration-effect curves (not shown), not

from the linear-log curves in figure 12. The positions of

the ID80 points in figure 15 differ a little from the posi-

tions in figure 14 because of the differences in how the

concentration-effect curves were drawn. Note that there

are two Mode II isobols. Especially note that the Mode II

isobols are not the same as the “classical” isobol simu-

lated from the Loewe additivity model, Eq. 6. This is in

direct contradiction to claims that the Mode II model

and Loewe additivity are the same (Teicher et al., 1991).
[This contradiction is the result of Steel and Peckham’s

(1979) misinterpretation of the first paper on isobolo-

grams in English by Loewe (1953). Unfortunately, this

key paper, Loewe (1953), was written with a cryptic

mathematical notation and is difficult to interpret. It is

a dramatic contrast to his lucid original paper on the

subject, Loewe and Muischnek (1926), written in Ger-

man.] The area between the Mode I and Mode II isobols

is called the “envelope of additivity.”

Because most of the ID80 points fall between the bor-
ders of the envelope of additivity, using either Mode II

isobol for the upper boundary, the conclusion for the

common data set would be additivity.

0 10 20 30 #{176}40

[DRUG I]

FIG. 15. Isobologram from the Method of Steel and Peckham

(1979) for the 20% survival level (IC80). Note that the isobol for the

Mode I assumption, each of the two isobols for the Mode II assump-

tion, and the isobol for the classical Loewe additivity assumption are

all different. The data points are IC8�,s taken from log-linear plots of

%survival vs. drug concentration. The letters next to the points

correspond to the legend ofthe linear-log survival plots in figure 13.
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The advantages of the method of Steel and Peckham

(1979) include:

(a) a region, the envelope of additivity, is provided to

facilitate judgments about departures from no interac-
tion, rather than a line. The envelope of additivity pro-
vides a standard, with a reasonable theoretical justifi-

cation, to aid in the decision ofwhether a departure from
additivity is great enough to warrant further consider-

ation.
(b) the automated variant of the approach (Teicher et

al., 1985) provides a degree of objectivity and some sta-
tistical rigor.

(c) the approach is widely accepted.

The disadvantages of the method include:

(a) neither of the two no interaction null reference
models, that for Mode I or that for Mode II, are the

preferred Loewe additivity model. The Mode II reference

model is not part of other common approaches; in addi-

tion, it results in two predictions.
(b) the envelope of additivity does not take into ad-

count the precision of the data; it is not larger for data
with more experimental error. It is not a statistical
interval.

(c) the method lacks a summary measure of the inten-

sity of interaction.
(d) the method is insensitive to small but real and

potentially important interactions. It lacks good statis-

tical power. This was seen for the analysis of the com-

mon data set.

G. Median-effect Method of Chou and Talalay (1984)

Of all of the methods examined in this paper, the
median-effect approach received the most thorough re-
view. This is because, of all of the methods to assess

agent interaction introduced since 1970, the method of
Chou and Talalay (1984) has been the most influential

and controversial. Probably the key element of the ap-
proach that has led to its widespread use is the avail-

ability of an implementation in inexpensive microcom-
puter software (Chou and Chou, 1987). Chou (1991a)
lists 79 recent publications that applied the median-

effect approach to real laboratory data; 39 centered on
anticancer agents, 25 centered on antiviral agents, and
15 centered on other miscellaneous agents. Our own
literature survey located 3 application papers in 1985, 5

in 1986, 13 in 1987, 16 in 1988, 28 in 1989, 31 in 1990,
and 11 in an incomplete survey of 1991 for a total of 107.
It is clear that the approach has many advocates and

that its use has continued to grow. The article, Chou and
Talalay (1984), may become one of the most often-refer-
enced scientific papers in the history of biomedicine.

The median-effect approach is the culmination of a
long series of very technical papers centered on describ-
ing a wide variety of complex enzyme kinetic mecha-
nisms with a general framework (see Chou, 1991a for a

summary). Many useful concepts and equations were
introduced by this series of papers, including several

used by our group in the development of our own re-
sponse surface approach for assessing agent combina-

tions (Greco et al., 1990). In fact, our original motivation
in developing our approach was merely to add small

improvements to the median-effect method. For in-

stance, our first goal was to show (via Monte-Carlo sim-
ulation) that using weighted nonlinear regression to fit a
nonlinear form of the median-effect equation, Eq. 1, to

single drug data was superior to using unweighted un-

ear regression to fit a linearized form of the median-
effect model, Eq. 23, to single drug data (Syracuse and
Greco, 1986). Even though the weighted nonlinear re-
gression approach was consistently more precise and
less biased than the unweighted linear regression ap-

proach, for the estimation of both Dm and m, the differ-

ences were usually not striking, and the simpler method

performed very well for most cases. However, as we
examined the method of Chou and Talalay (1984) more

closely, we found several disturbing problems, which
will be described below. In addition, our own approach

developed along very different lines, most notably with

the incorporation of some ideas of Berenbaum (1985).
Today, our approach for assessing agent interaction

(Greco et a!., 1990) bears only a faint resemblance to the
median-effect method.

The analysis of the common data set by the approach

ofChou and Talalay (1984) is shown in figure 16. Only a

0.2 0.4 0.6 0.8 1.0

fo

FIG. 16. Median-effect (upper panel) and CI vs. fa plot (lower

panel) for the analysis of data from table 3, columns 2 through 4, for

drug 1 alone (points 4 through 8), drug 2 alone (points 9 through 13)
and for the combination at a fixed ratio ofD1D2 of 10:1 (points 14, 20,

26, 32, and 38) The solid square data points in the lower panel

represent the five combination points and were calculated as de-

scribed in the text.
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brief description of the approach is included here; there

have been many detailed recipes of the approach previ-

ously published (e.g., Chou and Talalay, 1984; Chou and
Chou, 1987; Chou, 1991b; Calabresi, 1991). The easiest
way to apply the approach to a data set is to use the

software program by Chou and Chou (1987), which is
available for both the Apple II and IBM-compatible per-
sonal computers. Eq. 23 is fit to data from drug 1 alone,

drug 2 alone, and the combination of drug 1 and drug 2
in a fixed ratio. [Eq. 23 is a linearized form of Eq. 24,
essentially equivalent to the Hill equation, Eq. 2, and

was derived by Chou and Talalay (1981).]

log[f11’ - 1] = log[fa� - lj�

fa ( D

fu�Dm)

An average control effect was first calculated (the aver-

age ofthe 3 D1 = D2 = 0 points, 106, 99.2, and 115 from
column 4 of table 3) to be 107. Then, each fit value was

calculated by dividing the measured effect in column 4

by 107. For drug 1 alone, points 4 to 8 were used, for

drug 2 alone, points 9 to 13 were used, and for the

combination at a fixed ratio of 10:1, points 14, 20, 26, 32,
and 38 were used. (In principle, more sets of points from

other fixed ratios from the data set in table 2 could have

been used for the analysis; however, it is very common to
apply the approach to a single fixed ratio.) Additional

calculations were performed on the 15 data points to
construct the transformed y-values of log[fu � 1] and
the transformed x-values of log(D). Unweighted linear
regression was applied separately to the three sets of

five points each, and the slopes and y-intercepts were

estimated, m and -mlog(Dm), respectively. The trans-

formed data and fitted curves are in the upper panel of
figure 16. The Dm values were calculated from the y-
intercepts and slopes. The six estimated parameters

were: for drug 1, Dm1 = 7.40, m1 = 0.845; for drug 2,
Dm2 = 0.631, m2 = 1.37; for drug 1 + 2 in a fixed ratio,

Dm12 = 4.48 and m12 = 1.77. [Note that the signs of the

ms have been made positive to correspond to the stan-
dard implementation of the approach of Chou and Tala-
lay (1984); this is the opposite of the convention usually
used by our group.] According to Chou and Talalay

(1984), ifm1 = m2 = m12, then the two drugs are claimed
to be mutually exclusive; ifm1 = m2 � m12, then the two

drugs are claimed to be mutually nonexclusive; m1 �

m2, the mutual exclusivity ofthe drugs is unclear. Chou
and Talalay (1984) do not explicitly state how the equiv-
alencies ofm1, m2, and m12 should be determined. How-
ever, we will make the conclusion that 0.845, 1.37, and
1.77 are sufficiently different from each other that the

mutual exclusivity is unclear for the common data set.

In the lower panel of figure 16 are the CI vs. fa plots

for both the mutually exclusive and mutually nonexclu-

sive assumptions. These plots were generated by insert-
ing the six estimated parameters from the median effect

plots into Eq. 25 for the mutually exclusive case and into

Eq. 26 for the mutually nonexclusive case (Chou and

Chou, 1987; Chou, 1991b), and calculating CI for the
range of fa from 0.01 to 0.99. (Here, R is the ratio of

concentrations ofD1D2). The area above the CI = 1 line
represents antagonism; below, synergism. The five data

points in the lower panel represent the five combination
points that have been transformed with Eq. 27 and

directly plotted, without relying on the estimation of

Dm12 and m12. This addendum to the approach, sug-
[23] gested mainly for nonconstant combination ratios

(Chou, 1991a), is also applicable to fixed combination

ratios, as shown by our example. To the best of our

knowledge, it is not yet available in the commercial

[24] software (as of August, 1992). This is essentially the
same approach as described in Section V.E., the calcu-
lation of Berenbaum’s (1977) interaction index.� �L+�L �

�1�II�L �

m__-_1. -_

D1 D2
CI= fa Vm1 fa 11,02 [27]

Dm111 Dm211

Overall, the conclusion is strong antagonism at low fas,
slight synergism at fa > 0.8, with the assumption of
mutual nonexclusivity; strong Loewe antagonism at low

fas, slight Loewe synergism at fa > 0.8, with the as-

sumption of mutual exclusivity. Note that the extreme
antagonism occurs to the left of the combination data

points. If one would just examine the five combination

points calculated with Eq. 27, then one might conclude
Loewe additivity; or slight Loewe antagonism at low fas
and slight Loewe synergism at high fas.

The advantages and good features of the median-

effect approach of Chou and Talalay (1984) include:
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(a) the fundamental equations for the approach were

derived from basic mass action enzyme kinetics, and

thus, the estimable parameters have the potential to be

biologically meaningful. However, the approach has
most often been applied to much more complex systems,

such as biochemical networks, viruses, bacterial cells,
mammalian cells, intact mammals, or populations of
mammals. Therefore, the biochemical origin of the me-

dian-effect approach, a relatively simple system of mul-
tiple inhibitors of a single enzyme, will usually not fa-
cilitate mechanistic insights into the more complex
systems to which the approach is applied. The mecha-

nistic models of the approach are used essentially in an

empirical manner.
(b) many useful equations, combined-action concepts,

and specific applications of the approach have been pub-
lished that have inspired others to create newer ap-

proaches (e.g., Greco et al. 1990).

(c) part of the method involves the fitting of models to
data with an objective, well accepted statistical ap-
proach, namely linear regression.

(d) the experimental design requires fewer data points

than a typical design to be analyzed by the isobologram

technique and other methods. However, the common
sparse design with one fixed ratio of D1D2 may miss

some interesting regions of the full 3-D concentration-
effect surface (Prichard and Shipman, 1990).

(e) the mutually exclusive model is consistent with the

Loewe additivity null reference model.
(f) for many analyses of real data, when artifacts

inherent in the approach do not make a major contribu-

tion, the overall general conclusions will be consistent
with more rigorous methods. However, conversely, when
artifacts do make a major contribution, the final conclu-
sions will not be consistent with more rigorous methods.
For example, in an informal survey of 37 application

papers that used the Chou and Talalay (1984) approach,
we re-analyzed 136 data sets with the parametric model

fitting approach, using Eq. 5, described in Section V.L.1.
For only 38 of the 136 data sets (28%) was there close

agreement in the final conclusions for the two ap-
proaches.

(g) the method is available in microcomputer software

for the popular Apple II (Apple Computer Inc., Cuper-

tino, CA) and IBM PC (IBM Corporation, Boca Raton,
FL) (and compatible) microcomputers. This last advan-

tage is the most crucial: for any sophisticated data anal-
ysis technique to be used routinely by biomedical scien-

tists, especially by those with little mathematical and
statistical training, the method must be readily avail-
able in the form of inexpensive, user-friendly software.

The disadvantages of the method of Chou and Talalay

( 1984) include:
(a) the mutually nonexclusive model was not ade-

quately derived. Appendix A includes an extensive dis-
cussion of this point, provides a derivation from basic

enzyme kinetic arguments for Eq. i2, a model that can

also be derived directly from the concept of Bliss inde-

pendence, and provides support for Eq. 12 being a more

appropriate model for mutual nonexclusivity for two
inhibitors against a single enzyme, than Chou and Ta-
lalay’s model 18 (or an alternate form, Eq. 19). It must

be noted that, as shown in Appendix A, the mutually
nonexclusive model of Chou and Talalay (1984) for two
inhibitors of a single enzyme can be derived from en-
zyme kinetic arguments by making some additional as-

sumptions. However, it is unlikely that an equation de-
rived from a set of unusual assumptions, for a rare

experimental system, would have general utility for
modeling concentration-effect phenomena from a wide

spectrum of complex agent interaction systems. Another

implication of this discussion is the weakness of Chou

and Talalay’s (1984) argument that the fractional prod-

uct method of Webb (1963) is not valid for higher order

systems with sigmoidal concentration-effect curves

( Im � > 1). In fact, from a theoretical basis, any approach
based upon Loewe additivity or Bliss independence is
“valid” for most types of concentration-effect functions
over a wide range of parameter values.

(b) as shown in Appendix B, Nonlinear Nature of the
Median Effect Plot for Mutual Nonexclusivity section,

the median-effect plot for mutually nonexclusive inhib-
itors is not linear; this leads to inaccuracies in the esti-

mation of Dm12 and especially of m12 via linear regres-
sion, and then to artifacts in the CI vs. [a plot, including

large antagonism at low [as. Interestingly, this nonlin-

earity in the median-effect plot for their mutually non-

exclusive model was first shown by Chou and Talalay
(1981) in their figure 2 (not shown here).

(c) the CI formula for the mutually nonexclusive case

is not correct. This is shown in Appendix B, Incorrect
Combination Index Calculations for the Mutually Non-
exclusive Case section. This also leads to artifacts in the

CI vs. fa plot.
(d) even for the mutually exclusive case, one effect of

Loewe synergism or Loewe antagonism is to make the
median-effect plot nonlinear, leading to artifacts in the

CI vs. fa plot. This is shown in Appendix B, Nonlinear
Nature of the Median Effect Plot for Mutual Exclusivity
with Interaction section.

(e) The median-effect equations for both the mutually

exclusive and nonexclusive cases were originally derived
by Chou and Talalay (1981) with the assumption that

m1 = m2. When m1 � m2, which is usually the case, both
models are only approximately valid. The approximation

becomes worse as the difference between the ms be-
comes larger. This problem and several others are illus-
trated in figure 17. Eight simulations were conducted
using Eq. 5 as a model (not the model) for Loewe syner-
gism or Loewe antagonism, using the values for m1, m2

and a listed in the insets of the figure. The simulated
data were plotted in panel A after the median-effect
transformation. The CI vs. [a plots were simulated di-
rectly with Eq. 8, thus avoiding many of the calculation
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FIG. 17. Median-effect plots (A) and CI vs. fa plots (B) for data simulated with Eq. 5, with parameters: Econ = 100, IC50,1 = 10, IC502 =

1 and m1, m2, a as listed in the inset boxes in each panel. CI was calculated from Eq. 8. Note that the median-effect plot is a straight line

only for the case in which m1 = m2 and a = 0. Thus, both m1 � m2 and a * 0 will result in a curved median-effect plot. Also note that the

shape of the CI vs. fa plots are influenced by both the slope parameters and the interaction parameter.

artifacts discussed in points (b) through (d) of this sec-

tion. Note that the median-effect plot is a straight line

only for the case a., in which m1 = m2 = -1, and a = 0.
Thus, either m1 � m2, or a * 0, or both conditions will

result in a curved median-effect plot. Note that large

differences in slope parameters (e.g., curve e., m1 = -1,

m2 �, a 0) seem to have a more profound effect on
the curvature than does a high a value (e.g., curve c.,

m1 = -1, m2 = -1, a = 20). Because only pure Loewe
additivity, pure Loewe synergism, or pure Loewe antag-
onism were simulated, none of the CI vs. [a plots cross

the CI = 1 line. Note that all of the plots, for both Loewe

synergism and Loewe antagonism, start at CI = i ([a =

0). This implies that all reported CI vs. [a plots that

show large antagonism in the region nearfa = 0, contain
calculation artifacts. Indeed, the CI = i at [a =0 point

should be the anchor for all CI vs. fa plots, no matter

what kind of combined-action is present. Also note that

CI vs. [a curves b. and c. (m1 = m2 = -1) curve downward
near [a = 1, whereas, curves [. and g. (m1 = -1, m2 = -5)
curve upward near [a = 1. Finally, note that increasing

degrees of Loewe synergism, for the same set of slope
parameters, order the curves from bottom to top for the
median-effect plot, but from top to bottom for the CI vs.
[a plot. It is clear that in the vast majority of cases, the
median-effect linearization of combination data at a

fixed ratio will result in a true nonlinear curve. The
nonlinearity may be small, and data variation may mask

the nonlinearity, but the fitting of a median-effect

straight line to such data will almost always be, at best,
only approximately correct.

(f) the method ofChou and Talalay (1984) lacks many
aspects of modern statistical approaches. First, the fit-

ting of the median-effect line to data with linear regres-

sion does not have the option of weighting. However,
proper weighting only offers a slight improvement to the
unweighted linear regression (Syracuse and Greco,

1986). Second, the only goodness of fit statistics offered
are Pearson correlation coefficients, r, for each separate

unweighted linear regression of the transformed data

for each median-effect plot. It would be useful to have
some overall goodness of fit statistic for the fit of the

overall model simultaneously to all of the data. There is
no uncertainty measure provided with the estimates of

m1, m2, and m12 to aid in making the decision between
mutual exclusivity vs. mutual nonexclusivity. Most im-

portantly, there is no uncertainty measure associated
with the final result, the CI vs. [a plot. Objective deci-
sions regarding the occurrence of moderate degrees of

Loewe synergism or Loewe antagonism are therefore

difficult. However, newer variants of the approach in-
dude more extensive statistical procedures, such as con-

fidence intervals for the combination index (Belen’kii
and Schinazi, 1994).

(g) the relationship between the CI vs. [a plot, the
original raw data, and the original concentration-effect
curves is somewhat hard to visualize. The experimenter
may “lose touch” with his data. However, a good under-

standing of the relationship between the CI vs. [a plot

and the 3-D concentration-effect surface for a two drug
combination, figure 7, may assist in this visualization.

(h) the Chou and Talalay (i984) approach first in-
volves a decision on mutual exclusivity vs. mutual non-
exclusivity, and then a decision on synergism, additivity,

or antagonism, for a total of six different cases. There is
a conceptual difficulty in differentiating between mutual
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exclusivity with synergism and mutual nonexclusivity
with synergism, additivity, and especially with antago-

nism. The regions overlap. This can be seen in isobols of

figure 6, in which curve E represents pure mutual ex-

clusivity (a 0), curve C represents pure mutual non-
exclusivity (a = 1), and curve D (a = 0.5) would be an
example of Loewe synergism with reference to the mu-

tually exclusive model and of Loewe antagonism with
reference to the mutually nonexclusive model. In line
with this reasoning, the figure legend of figure 2 from

Chou and Talalay (1981) states that the curve for mu-
tual nonexclusivity “clearly shows synergistic effects at

high concentrations. . . . “ In fact, one can see that the
nonlinear form of the mutually nonexclusive model, Eq.

19, is the same as our flagship model for Loewe syner-

gism, Eq. 5, with m = m1 = m2 and a = 1.

(i) the available software (Chou and Chou, 1987) that
implements the approach is relatively unsophisticated.

Future changes in the computer software should include
improvements in graphics, datafile editing, saving and
retrieving, and the prevention of the program from
“bombing” under certain conditions.

(j) if the concentration-effect curve for either agent in

a combination does not follow the Hill model, Eq. 1 (or

the equivalent median-effect model, Eq. 24), then the
Chou and Talalay (1984) approach is not valid.

(k) there are three practical decisions that users of the

Chou and Talalay (1984) approach must make that crit-

ically affect the final results: (1) what to do with data
points in which % survival equals or exceeds iOO%, or

equals or is less than 0%; such data will lead to compu-
tational difficulties; (2) how to decide whether a specific
two-agent interaction is mutually exclusive or mutually
nonexciusive, especially when m1 � m2; and (3) how to

conclude synergism, additivity, or antagonism from the
CI vs. [a plot. There is a wide variety of different tactics
used by different groups to make these three critical
decisions. Therefore, the objectivity of the approach is
lessened. For example, for decision (1), some groups

either censor any extreme points ([a � 1, [a � 0) or

change any [a � i to a usable [a such as 0.96 (e.g.,
Schinazi et al., i986), whereas, most groups do not spec-
ify their procedure (e.g., Hartshorn et al., 1986). For

decision (2), as recommended by Chou and Talalay
(1984), some assume mutual exclusivity when the medi-

an-effect plots for both single drugs and the combination
are parallel (e.g., Koshida et al., 1989), assume mutual
nonexclusivity when the slope parameters for the single

drugs are similar but the slope for the combination is
much different (e.g., Nocentini et al., 1990), and report

both exclusivities when the median-effect plots for both
single drugs are not parallel (e.g., Eriksson and Schi-
nazi, 1989). However, some groups report the mutual

exclusivity results, because they feel that the mutually
nonexciusive results would not be much different (e.g.,
Vogt et al., i987; Kuebler et al., 1990). Some report

mutual exclusivity, because it corresponds to the classi-

cal isobologram approach (e.g., Johnson et al., 1992);

some groups assume mutual nonexclusivity, because it
yields a more conservative estimate of CI (e.g., Vathsala

et a!., 1990). Some assume mutual nonexclusivity, be-

cause the two agents are known to act at different sites

(e.g., Jackson, 1992), and some assume some exclusivity,
but don’t state which one or why (e.g., Richman et al.,
i99i). For decision (3), some groups stress the CI at high

[as, such as 0.50, 0.75, 0.90 and 0.95 (e.g., Kong et al.,
1991). Some show the whole CI vs. [a plot, from 0.01 to

0.99 and describe many of the nuances of the curve,
including the point at which the CI = 1 line is crossed

(e.g., Wadler et al., 1990). Some report an average CI for

the 50% effect point from several replicate experiments,
along with a standard deviation (e.g., Katz et al., 1990).

Some use several other additional approaches to analyze
the data, such as the isobologram approach, or the
method of Steel and Peckham (1979) and then report a

consensus (e.g., Nocentini et al., 1990). There are no firm
guidelines for assessing the importance of small consis-
tent differences between the CI vs. [a plot and the CI =

1 line. For example, in Chou and Chou (1987), the CI vs.

[a plot on page 42 follows a path slightly above the CI =

1 line, with a conclusion of additivity; whereas, the

CI vs. [a plot on page 61 follows a path slightly below the

CI = 1 line, with a conclusion of strong synergism.

H. Method o[Berenbaum (1985)

In one sense, the method of Berenbaum (1985) is

merely a graphical version of the interaction index ap-

proach of Berenbaum (1977). However, interpreted dif-

ferently, the method of Berenbaum (1985) is the basis of
all modern nonparametric and parametric response sur-
face approaches to be described in Sections V.K. and

V.L. The approach consists offitting concentration-effect
models to data for each agent alone, deriving a model for
Loewe additivity consistent with these single agent mod-

els, simulating the Loewe additivity model, superimpos-

ing this simulated Loewe additivity surface upon the
raw data points, and then deciding whether points are

above or below the surface, which will indicate Loewe

synergism or Loewe antagonism, depending upon
whether the 3-D concentration-effect surface rises or
falls with increasing agent concentrations. The derived
Loewe additivity models can accommodate different

slope parameters for each agent when each agent’s con-
centration-effect curve follows a Hill model, Eq. 2, 3. The
Loewe additivity models can even accommodate differ-

ent functional forms for the concentration-effect curve
for each agent. Unfortunately, these models are often in

unclosed form. A formal parametric model for Loewe
additivity is useful, but optional: Berenbaum (1985)
shows an example offitting complex single agent data by
hand. Stthnel (1992c) has derived and listed many para-
metric Loewe additivity models and emphasizes the use
of 3-D interaction plots, such as figure 9, and 3-D differ-

ence surfaces such as in figure iO. The functional form of
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FIG. 18. Analyses ofdata from table 3, columns 2 through 4. (A) Approach interpreted from Berenbaum (1985). Data for drug 1 alone and

drug 2 alone were fit by a Loewe additivity model, Eq. 13, with nonlinear regression as explained in the text. The 3-D fishnet is the best fit

Loewe additivity surface. The full 38-point data set is plotted on the same graph, with vertical lines indicating the distance between the data

points and the surface. Solid points are above the surface, and open points are below. For the 25 combination points, a solid point indicates

Loewe antagonism, and an open point, Loewe synergism. There is an exact correspondence between this 3-D graph and columns 9 through

11 oftable 3. (B) Graphical Bliss independence comparison. The best fit parameters from the fit ofthe Loewe additivity model, Eq. 13, were

estimated as for panel (A), but these parameters were used with the Bliss independence model, Eq. 12 to simulate the 3-D surface. The full

38-point data set is again plotted on the same graph. There are 11 points above the surface (Bliss antagonism), and 14 points below the

surface (Bliss synergism).
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the derived Loewe additivity response surfaces, e.g., Eq.

i3, can easily be extended to include interaction terms,

leading to a full combined-action model, such as Eq. 5. In

fact, the guidelines from Berenbaum (i985) for deriving

general Loewe additivity models led us directly to the

derivation of Eq. 5, which was first published in Syra-

cuse and Greco (1986). Interestingly, essentially the

same logic for deriving Loewe additivity and combined-

action models was part of a review paper by Hewlett

(i969), who provides examples of combined-action mod-

els from Finney (1952), Plackett and Hewlett (1952),

Landahl (1958), and Plackett and Hewlett (1967). How-

ever, Berenbaum’s (1985) hallmark paper is much

clearer and was published at a time when the necessary

computer hardware and software were sufficiently avail-

able to enable the routine application of his paradigm

and logical variants to real data.

We applied the method of Berenbaum (1985) to the

common data set by first fitting the first 13 data points

100

75

�50

A

2’�

3

4�

in columns 2 to 4 of table 3 with Eq. 13, that for Loewe

additivity for two inhibitory drugs that both individually

follow Eq. 2, just as described for the interaction index

approach of Berenbaum (1977) in Section V.E. The first

13 data points include the control points plus the drug 1

alone and drug 2 alone points. Just as in Section V.E.,

data were fit with nonlinear regression, weighted by

the reciprocal of the square of the predicted effect. The

five parameter estimates were: Econ = 99.2 ± 5.2; IC50,1

= 9.52 ± 1.7; IC50,2 = 0.966 ± 0.094; m1 = -0.989 ± 0.11;

m2 = -1.93 ± 0.13. Then, instead of calculating an in-

teraction index using Eq. 8, the fitted curve is shown in

figure 18(A), along with the raw data. For the 25 com-

bination points, a solid point (above the surface) mdi-

cates Loewe antagonism, and an open point indicates

Loewe synergism. The results are identical (as they

must be) to the results from the interaction index ap-

proach ofBerenbaum (1977) shown in columns 9 to ii of

table 3. There were 21 cases of Loewe synergism and 4

100

75

0
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cases of Loewe antagonism. The overall conclusion is

Loewe synergism.

The key advantages include:
(a) the null reference model is the Loewe additivity

model, Eq. 6.

(b) if the individual concentration-effect curves for
both drugs can be well characterized, then all of the

combination data can be used.
(c) the experimental designs can be parsimonious.

(d) the single agent data are fit with a logical response

surface model, possibly with modern curve fitting tech-
niques.

(e) it is not necessary to derive or use some arbitrary

combined-action model for fitting the combination data.
Mosaics of regions of Loewe synergism and Loewe an-

tagonism are thus easily accommodated.
(f) the approach led to the creation and use of full

combined-action models (e.g., Greco et a!., 1990).
(g) the approach can be used to characterize very

complex mixtures of three or more agents. If one is

chiefly interested in the assessment of combined-action
at a specific combination of doses of the agents and not
in characterizing the whole response surface, then ex-

perimental designs can be very frugal.

The key disadvantages include:
(a) just as with the interaction index calculation ap-

proach (Berenbaum, 1977), it is not obvious how to de-

rive a good summary measure of the intensity of inter-

action, with an accompanying measure of uncertainty.
However, Gennings (1995) recently proposed some ex-

tensions to Berenbaum’s (1985) method that include

some excellent statistical summary measures of depar-
tures from Loewe additivity.

(b) the derivation and application of complex Loewe
additivity models may require considerable mathemati-
cal, statistical, and computing resources.

I. Bliss (1939) Independence Response

Surface Approach

We did not find this specific method in the literature,
but it is included because it is a logical cross between the
Webb (1963) and Berenbaum (1985) approaches. This

approach is a graphical version of the fractional product
method of Webb (1963) and is similar, but not identical,

to the method ofPrichard and Shipman (1990) described
in Section V.J. The results are shown in figure 18(B),
which was made in the same way as described in Section
V.H. for the Berenbaum (1985) approach, except that the
Bliss independence model, Eq. 12, was used to simulate

the 3-D surface. There are 1 1 points above the surface
(Bliss antagonism) and 14 points below the surface
(Bliss synergism). The overall conclusion would be Bliss

independence. Interestingly, the results differ from
those previously found with the fractional product ap-
proach (Webb, 1963) (column 6 oftable 2; 4 cases of Bliss
synergism and 21 cases of Bliss antagonism). This dif-

ference is caused by the use of fitted individual concen-

tration-effect curves for making the Bliss independence
predictions for the surface approach, vs. the raw data for

the individual drugs for making the Bliss independence
predictions for the fractional product method.

This approach shares advantages (b) through (e) of the

Berenbaum (1985) approach. It is possible that full corn-

bined-action models can be derived and applied, as sug-
gested by Unkelbach (1992).

The key disadvantages include:

(a) the basis ofthe approach is Bliss independence, not
our Loewe additivity preference.

(b) it is not obvious how to derive a good summary

measure of the intensity of interaction, with an accom-

panying measure of uncertainty. However, variants of

the recently proposed extensions by Gennings (1995) to

Berenbaum’s (1985) approach may solve this problem.

(c) the derivation and application of complex Bliss
independence models may require considerable mathe-
matical, statistical, and computing resources.

J. Method o[Prichard and Shipman (1990)

This approach (e.g., Prichard et al., 1990) is a graph-

ical, 3-D version of the fractional product method of

Webb (1963). Figure 19 shows the result of the analysis
of the common data set, columns 2 through 4 of table 3.
A checkerboard (factorial) experimental design, like that

provided by the common data set, is necessary for the

optimal use ofthe approach. We used the MacSynergy II

program (Prichard et al., 1992), which is a set of Mi-

croSoft Excel (Microsoft Corporation, Redmond, WA)

spreadsheets and macros, kindly provided by M. Pri-
chard, which was run with Excel to perform the neces-
sary calculations. We used the Tecplot graphics package

(Arntec Engineering, Inc., 1988) to prepare figures 19

and 20.
First, the % inhibition for every data point is calcu-

lated (100% - column 3 oftable 3 divided by the average

control, 106.7). (Note that 107 was the average control
value used to generate columns 5 and 8 in table 3.) The

points, connected with straight lines, are plotted on a
3-D graph in figure 19(A). The predictions, based upon

Bliss independence, are calculated on a point-by-point

basis, just as with the Webb (1963) approach and are

plotted in figure 19(B). Figure 19(C) is the difference plot

of the % inhibition above predicted. These differences
are equivalent to the Drewinko et a!. (1976) Scores in

column 8 of table 3, after reversing the signs, and divid-
ing the Drewinko Scores by the average control. There

are 22 combination points below the zero plane, repre-

senting Bliss antagonism, and 3 points above the zero
plane, representing Bliss synergism. These 3 data points
are the same ones that showed Bliss synergism in table

3, data points 21, 26, and 36. The Bliss synergy differ-
ences were added up to yield a summary measure, 7.19,

and the Bliss antagonism differences were added up to
yield a Bliss antagonism summary measure, -65.27.
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FIG. 19. Method ofPrichard and Shipman (1990) applied to the data from table 3, columns 2 through 4. (A) Raw data, 36 data points (the

3 control points were averaged into 1 point), expressed as %inhibition, connected by straight lines, in a 3-D plot. (B) combination points are

predicted directly from the raw data for drug 1 alone and drug 2 alone, with Eq. 11, that for Bliss independence, expressed as %inhibition,

and connected with straight lines, in a 3-D plot. (C) The set of points from panel (B) are subtracted from the set of points from panel (A) and

shown in a 3-D plot. Sections ofthe difference surface above 0 indicate Bliss synergism, below 0, Bliss antagonism. Both Bliss synergism and

Bliss antagonism are seen.

FIG. 20. An alternate approach provided by Prichard et al. (1992) that integrates the Loewe additivity reference concept of Berenbaum

(1985), applied to the data from table 3, columns 2 through 4. (A) Same as panel (A), figure 19. (B) Predicted Loewe additivity surface

analogous to panel (B) offigure 19. (C) Difference surface analogous to panel (C) offigure 19. Mostly, Loewe synergism is seen. The algorithm

used by Prichard et al. (1992) does not make Loewe additivity predictions for points along the outer edge, and thus the predicted and

difference surfaces appear to be smaller than those of figure 19.

Although we were able to successfully apply the

Prichard and Shipman (1990) method to our common

data set, the ideal data set for this approach will contain

replicates. Replicates allow the calculation of point-by-

point 95%, 99%, and 99.9% confidence intervals for the
experimental data. If the lower confidence limit for a

point is greater than the predicted Bliss independence,
the observed Bliss synergy is considered to be signifi-
cant. Similarly, if the upper confidence limit for a point
is less than the predicted Bliss independence, the oh-
served Bliss antagonism is considered to be significant.
The significant Bliss synergism and antagonism differ-

ences are totaled separately for additional summary
measures. The overall conclusion for the results of the
analysis of our common data set is Bliss antagonism.
However, as stated above, replicates are needed in order
to make firm conclusions with this approach.

The main advantages of the approach are:

(a) the approach emphasizes the 3-D nature of corn-

bined-action concentration-effect surfaces; it is very vi-

sually oriented.

(b) the software, MacSynergy II, is inexpensive and

straightforward to use, provided that one already is

proficient with Excel (or possibly some other spread-

sheet software) and a suitable graphics package.

(c) the approach is very flexible and does not require a

parametric model for either the single agent concentra-

tion-effect curves or for combined-action. The approach

is, essentially, a very simple nonparametric multivan-

ate curve fitting procedure. The approach can easily

accommodate mosaics of interspersed regions of Bliss

synergism and Bliss antagonism.

(d) there are some summary and uncertainty mea-

sures associated with claims of Bliss synergism and

Bliss antagonism.

(e) mathematical, statistical, and computing complex-

ities associated with the fitting of full combined-action

response surface models are avoided.

(f) when compared with all of the simpler approaches

examined in this review, Sections V. A-V. G, the method

of Prichard and Shipman (1990) stands out as having
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the best combination of automation, accessibility, intu-

itiveness, and visualization.

The disadvantages include:

(a) Bliss independence is the main no interaction ref-
erence model. However, a new feature added to MacSyn-
ergy II, but not necessarily recommended by Prichard et
al. (1992), is the ability to use Loewe additivity as the
null reference model. The results of the analysis of the
common data set are displayed in figure 20. Note that
the algorithm used by Pnchard et al. (1992) does not

make Loewe additivity predictions for points along the

outer edge, and thus the predicted and difference sur-

faces appear to be smaller than those of figure 19. The

conclusion for the analysis in figure 20 is Loewe syner-

gism.
(b) the ideal experimental design, a full checkerboard

of drug dilutions with replicates, may be prohibitive for
many applications. However, for many in vitro studies of
antiviral or anticancer agents, experimental systems

use 96-well culture plates, which facilitates the require-
ment of a large experimental design.

(c) similar methods described in Sections V.H. and

V.1., in which the data for drug 1 alone and drug 2 alone

are fit by specific parametric models, but in which the

combination points are not fit by specific combined-
action models, may offer a cost-effective advantage over

the Prichard and Shipman (1990) approach.
(d) the approach is essentially, an exploratory ap-

proach. It may be ideal as a front-end for further para-
metric 3-D response surface approaches for most data

sets, or possibly a reasonable final method for very corn-
plex data sets with numerous regions of true Bliss syn-
ergisrn and Bliss antagonism. However, it might be of
interest to test whether some of the mosaics of Bliss
synergism and Bliss antagonism disappear after substi-

tuting Loewe additivity for Bliss independence as the no

interaction null reference model. Data sets generated
with a full replicated checkerboard design likely contain
much more useful information than can be revealed by a

simple exploratory approach. It would be cost-effective
to further analyze such data sets with powerful multi-

variate parametric response surface approaches, such as
described in Section V.L.

The paper that introduced the method of Prichard and
Shipman (1990) also provided an extensive review of

other older rival approaches. There were many confus-
ing arguments included in this review, and because it
may have had a large impact on workers in the antiviral

chemotherapy field, and many oftheir arguments are at
odds with our own views, some of Prichard and Ship-
man’s (1990) assertions will be disputed:

(a) they claim that Chou and Talalay’s (1984) mutu-
ally exclusive model is not equivalent to the Loewe ad-

ditivity model. As shown in discussions of figures 7 and
8, and elsewhere in our review, they are indeed equiva-
lent. Pnchard and Shipman’s (1990) assertion was based

upon the unreasonable assumption oflinear single agent

concentration-effect curves, rather than sigmoidal

curves following the Hill equation, Eq. 1.

(b) they claim that Loewe additivity is equivalent to
fractional effect addition, Eq. 17, and to Steel and Peck-

ham’s (1979) Mode II model. All three models are differ-
ent, as discussed in Section N of our review. The cryptic
paper of Loewe (1953) may be responsible for this con-

fusion.
(c) they imply that Chou and Talalay’s (1984) mutu-

ally nonexclusive model is, in general, equivalent to
Bliss independence (Webb’s 1963 model). This was

shown not to be true in Appendix A and not to be true
originally by Chou and Talalay (1984). Prichard and

Shipman (1990) only examine the case of a first order

system, an exceptional case in which the models are
equivalent, as first demonstrated by Chou and Talalay

(1984).

(d) Prichard and Shipman (1992) assert that the
methods proposed by Suhnel (1990) and Greco et al.
(1990) are not quantitative and that the method of

Prichard and Shiprnan (1990) is “uniquely suited as it is
the only one that quantitates statistically significant

interactions.” As we hope we demonstrated in our re-

view, their conclusion is overstated.

K Nonparametric Response Surface Approaches

There are many response surface approaches avail-

able that do not require an a priori assumption of a
specific functional form containing estimable pararne-
ters. The method of Prichard and Shiprnan (1990) is a

particularly simple nonpararnetric technique, which
connects data points with straight lines. More sophisti-
cated nonpararnetric approaches that have been applied
to concentration-effect data include: kernel estimation
(Staniswalis, 1989), spline-based procedures for mono-

tone curve smoothing (Kelly and Rice, 1990), and a more
traditional spline-based procedure introduced by Suh.nel
(1990) and later applied by Baumgart et al. (1991).

Laska et a!. (1994) published an approach to detect
Loewe synergism or Loewe antgonism, which uses some

geometrical principles derived from Loewe additivity re-
sponse surfaces, but which does not require assumptions
regarding the specific functional form of the individual

dose-response curves or the combined-action surface.
Thus, the approach uses a nonparametric structural

model. The random model used to describe data varia-
tion can be either parametric or nonparametric. A mm-
imum of only three design points are needed to apply

this method; it should be classified as an hypothesis-
testing rather a response surface approach.

Only the traditional spline-based response surface ap-
proach will be reviewed here.

1. Bivariate spline fitting (S#{252}hnel, 1990). Essentially,

Suhnel (1990) proposed to fit data from combination
experiments with bivariate splines, without and with

smoothing, and then to display the resulting 3-D surface
and contours at various levels of the surface. Bivariate
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splines are sets of piecewise polynomials running in two

dimensions that flexibly follow the points of a surface.

The raw data from the common data set is shown in
figure 21(A) with a bivariate spline (Harder and Des-

mans, 1972; Meinguet, 1979), with no smoothing, fit to

the data with the procedure, G3GRID from the SAS
statistical package (SAS Institute, 1987). Figure 2 1(B)

shows contours drawn from the raw data at 10% effect
intervals (from 90% to 0% Control, from left to right),

using the SAS procedure, GCONTOUR, using an algo-

rithrn from Snyder (1978). Suhnel emphasizes that the

shape ofthe contours can be interpreted directly without

the need of fitting a parametric function to the data. A

straight diagonal NW-SE isobol would be consistent
with Loewe additivity. Because the isobols in figure

21(B) are mostly slightly bowed downward, the conclu-

sion is slight Loewe synergism. The approach is a more

sophisticated version of the Prichard and Shipman
(1990) approach, but with the null reference model being

Loewe additivity, not Bliss independence. The S#{252}hnel
(1990) approach shares many of the advantages and

disadvantages of the Prichard and Shipman (1990) ap-

proach.

2

The main advantages include:

(a) Loewe additivity is the null reference model.
(b) the approach is very flexible and does not require a

parametric model for either the single agent concentra-

tion-effect curves, or for combined-action. Mosaics of
interspersed regions of varying degrees of both Loewe
synergism and Bliss antagonism are easily accommo-

dated. S#{252}hnel(1992a, 1992b) considers this character-
istic so important that he has questioned the routine use
of 3-D combined-action models, such as Eq. 5, which

include only a single interaction parameter.

The disadvantages include:

(a) like many nonparametnc response surface ap-

proaches, the required experimental design must in-

dude a large number of regularly dispersed points.

(b) the approach is essentially only an exploratory

approach.
(c) no summary measures of interaction intensity or

conclusion uncertainty are provided.
(d) the approach is more cornplex to implement and to

use than the Prichard and Shipman (1990) approach.
(e) the potential user is required to find his own soft-

ware implementation of the approach.

[ Drug 1]

FIG. 21. Analysis ofdata from table 3, columns 2 through 4 by a nonparametric approach interpreted from S#{252}hnel (1990). (A) The surface

is a fit ofthe data with a bivariate spline (Harder and Desmarais, 1972; Meinguet, 1979), no smoothing, with the procedure, G3GRID, from

SAS (SAS Institute, 1987). All 38 data points, whether they fall above or below the surface, are shown as solid circles. (B) Contours drawn

from the raw data at 10% effect intervals (from 90% to 0%Control, from left to right), using the SAS procedure, GCONTOUR, using an

algorithm from Snyder (1978). The general shape of the contours is in the direction of Loewe synergism.
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L. Parametric Response Surface Approaches

In many senses, parametric response surface ap-

proaches are the most complex and difficult to apply to

the problem of the joint action of agents. They may
require the scientist-user to be facile with terminology

and concepts that were not part of his formal education,
may require the consultative advice of a statistician or

other quantitative professional, and will require corn-

puting facilities and expertise. However, in a broader

sense, these approaches may be the simplest of all of the

methods discussed so far. In general, to apply the ap-

proaches, (a) logical models are fit to data with auto-

mated computer programs, (b) parameter estimates,

other statistics, and graphs (3-D and 2-D) are generated

and interpreted, (c) conclusions are made.

1. Models of Greco et al. (1990). Eq. 5 and close vari-
ants have been successfully applied to laboratory data

from several studies (e.g., Greco et a!., 1990; Gaumont

et al., 1992; Greco and Dembinski, 1992; Greco and

Rustum, 1992; Guimar#{227}es et a!., 1994). Eq. 5 was fit to
the common data set with nonlinear regression,
weighted by the reciprocal of the square of the predicted

effect. [Metzler (1981) provides a good description of

nonlinear regression intended for biomedical scientists.]

The Nash (1979) version of the Marquardt (1963) algo-

rithm for nonlinear regression was coded by our group in

MicroSoft FORTRAN, and run on MSDOS-compatible

microcomputers.
The six best-fit parameter estimates (± standard

error) were: Econ = 95.1 ± 4.5; IC50,1 = 11.1 ± 1.3;

IC50,2 1.07 ± 0.068; m1 = -1.05 ± 0.078; m2 = -2.04 ±

0.080; a = 0.519 ± 0.11. The 95% confidence intervals
for each parameter can be calculated by multiplying
each standard error by the appropriate value of the

Student’s t-test distribution and then adding and sub-
tracting this value from the parameter estimate. The

appropriate value of the t0025 distribution for two-sided
95% confidence intervals and 32 degrees of freedom (38

data points, 6 parameters) is 2.04. The 95% confidence
intervals were: Econ, 86.0 to 104; IC50,1, 8.40 to 13.9;

IC50,2, 0.934 to 1.21; m1, -1.21 to -0.892; m2, -2.20 to

-1.88; a, 0.300 to 0.738. None of the 95% confidence

intervals encompass zero; all of the parameters were

well estimated. This is a positive indication of the model

fitting the data well.

The raw data and best fit 3-D curve are shown in

figure 22(A). A 2-D representation of the same concen-
tration-effect surface is shown in the isobologram of

figure 23, which was formed by the intersection of the

surface with planes at 10, 50, 90, and 99% inhibition.
Figure 24 includes concentration-effect curves (logarith-
mic concentration scales) for drug 1 at different drug 2

concentrations (left panel) and for drug 2 at different
drug 1 concentrations (right panel). The curves are sim-

ulations of Eq. 5 with the best-fit estimated parameters.
The curves are intersections of the surface shown in

FIG. 22. 3-D concentration-effect surfaces estimated from the

best fit of four different models, with weighted nonlinear regression
as described in the text, to the data from table 3, columns 2 through

4. Both fitted and raw data are expressed as a percentage of the

estimated Econ parameter. Solid points are above the surface; open

points fall below the surface. (A) Eq. 5; (B) Eq. 28; (C) Eq. 29; (D)
Eq. 29.

figure 22(A) with vertical planes at the concentrations of
drug 2 and drug 1 listed in the figure. These curves,

along with the actual data points, provide a visual anal-
ysis of the goodness of fit. Note the differences between
the set of best-fit simulated curves in figure 24 and the

analogous hand-drawn curves in figure 13. Figure 25
shows concentration-effect curves simulated with the

best-fit parameters for drug 1, drug 2, a 10:1 mixture of
drug 1 to drug 2, and a 10:1 mixture with the assump-

tion of Loewe additivity (a = 0). This 2-D representation
of the full 3-D surface in figure 22(A) provides a visual
assessment of the magnitude of the shift of the concen-
tration-effect curves, because of Loewe synergism, for
fixed ratio mixtures. The IC50 value for the 10:1 mixture
of the Loewe synergistic combination was 1.015-fold
(5.45/5.37) lower than the expected value for the Loewe
additive combination. This is close to the ratio of 1.012-
fold (5.00/4.94) for ideal data containing no error. It is
apparent that an a value of0.5 leads to only subtle shifts
in mixture concentration-effect curves. Because the a

estimate is positive and the 95% confidence interval,
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FIG. 24. Families of 2-D concentration-effect curves for the best

fit of Eq. 5 to the data from table 3, columns 2 through 4. This is

another 2-D representation of the 3-D response surface in figure 22,

panel (A). Note that drug concentrations are on logarithmic scales.
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FIG. 23. Families of2-D isobols for the best fit ofEq. 5 to the data

from table 3, columns 2 through 4. The set of contours is a 2-D

representation of the 3-D response surface in figure 22, panel (A).

Note that the X- and Y-axes are the concentrations of each drug

transformed by division by the appropriate value of the dose (or

concentration) of drug that inhibits survival by X% (Dy). The num-

bers on the isobols indicate the % inhibitory level.

0.300 to 0.738, does not encompass zero, a claim of small

but significant synergism is made.

As was stated previously several times in this paper,
Eq. 5, our flagship model, is a model for combined-

action, not the model. Eq. 5 has a questionable property:

for negative values of the interaction parameter, a, the

3-D concentration-effect surface has a saddle point and

rises back to Econ at simultaneous high concentrations

of both agents. This is illustrated in figure 26, a simu-

lation ofEq. 5 with a -1 (Loewe antagonism). Like the

fit of second order polynomial models to data sets that

show slight curvature, the fit of Eq. 5 to experimental

data demonstrating Loewe antagonism may be valid for

only a restricted region. The fit of Eq. 5 with negative a

FIG. 25. Predicted 2-D concentration-effect curves for drug 1

alone, drug 2 alone, and the combination of drug 1 and 2 in a fixed

10:1 ratio for the best fit of Eq. 5 to the full data set from table 3,

columns 2 through 4. The predicted Loewe additivity curve for the

same combination at a fixed ratio of 10:1, simulated by setting a = 0,

is also shown. The X-axis is the sum of concentrations of drug 1 and

drug 2 (logarithmic scale). The raw data points are the same ones

shown in figure 16.

estimates to experimental data has been shown to be

satisfactory (e.g., Greco and Dembinski, 1992). However,
we have systematically searched for a logical model that
would not rise up at mixtures of high agent concentra-

tions.
Such an experimental model is Eq. 28, whose general

form was first suggested by Finney (1952) and later
included in a list of plausible interaction models by
Hewlett (1969). (Eq. 28 rises back toward Econ only at
very high agent concentrations and large negative a

values.) Eq. 28 is a specific example ofthe general Loewe

combined-action model, Eq. 9. Eq. 28 differs from Eq. 5

by having all of the right-hand expression, except for a,
raised to the #{189}power. For simulations of Eq. 28, the

extent of bowing will be the same for isobols at different

effect levels determined from plots of D�iJIDx,2 vs. D1/

ID�,1. This is in contrast to the greater bowing of isobols

at higher levels of inhibition for Eq. 5, as seen in figures
4(E), 5(A), 8(C), and 23.

+

I D1D2
+ a (lIm,+11m2)t

� 1C50,lIC5o,2(Eco: E) )
Eq. 28 was fit to the common data set in the same way

as described for Eq. 5. Figure 22(B) shows the best-fit

3-D surface and the raw data points. The six estimated

parameters were: Econ = 88.9 ± 5.5; IC50,1 = 15.6 ± 2.2;
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The response surface approaches have the following

advantages:
(a) they provide a quantitative measure of the inten-

sity of interaction, along with a measure of its uncer-

tainty.
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FIG. 26. Simulation of Eq. 5, with Econ = 100, IC50,1 = 10,

IC50,2 L m1 = -1, m2 = -2, a = -1, an example of Loewe antago-
nism.

IC50,2 = 1.27 ± 0.11; m1 = -1.34 ± 0.11; m2 = -2.28 ±

0.13; a = 0.643 ± 0.18. As seen in Figure 22(B) and in
other 2-D plots not shown, the goodness of fit was ade-

quate. Because a was positive and its 95% confidence
interval did not encompass zero (0.270 to 1.02), Loewe

synergism is claimed. [Note however, that for some neg-
ative values of a (from -1.414 to 0), the isobols simulated
with Eq. 28 lie outside the limits ofthe graph ofD�?JIDX2

vs. D1/ID�,1 shown in figure 5(A); i.e., they lie outside the
unit square. This inadequacy of the general form of this

model was first pointed out by Machado and Robinson
(1994) and further explored by Khinkis and Greco (1994).]

2. Models of Weinstein et al. (1990). Eq. 29 was intro-
duced by Weinstein et al. (1990) and Bunow and Wein-

stein (1990); a repararneterization has been used more
recently (Kageyama et al. (1992). Eq. 29 is called the

robust potentiation model. Loewe additivity is its null
reference model. PC1, PC2, are the concentrations of

agents 1, 2 required to increase the apparent potency of
the other drug by a factor of2. The parameters, bp1, bp2,

govern the slope ofthe potentiative effect of agents 1 and
2, respectively. Loewe synergism, but not Loewe antag-

onism, can be modeled with Eq. 29, because a negative
PC parameter cannot be used with a corresponding non-
integral bp parameter. Eq. 29 and several other models

are integrated into the software package COMBO,

which runs in the MLAB (Civilized Software Inc, 1991)
environment on MSDOS-cornpatible microcomputers.

We fit Eq. 29 to data with nonlinear regression with our
FORTRAN program as described for Eqs. 5 and 28, with
weights equal to the reciprocal of the square of the
predicted response; we did not implement the interest-
ing weighting scheme described by Bunow and Wein-

stein (1990), a Gaussian kernel windowing technique

based on estimated responses.
We were unsuccessful in fitting the full nine-parame-

ter model, Eq. 29 to the common data set. There was not

enough information in the data set to allow the estirna-

tion of four separate interaction parameters, PC1, PC2,

bp1, and bp2. However we were successful in fitting two
different reduced seven-parameter models to the corn-
mon data set. Figure 22(C) shows the fit of Eq. 29, with

the expression containing PC1 and bp1 eliminated, and
figure 22(D) shows the fit of Eq. 29, with the expression

containing PC2 and bp2 eliminated. The need to use only
one of the two pairs of interaction parameters was also
reported by Weinstein et al. (1990). The estimated param-

eters for the best fit shown in figure 22(C) were: Econ =

95.3 ± 4.8; IC50,1 = 11.0 ± 1.4; IC50,2= 1.02 ± 0.084; m1 =

-1.13 ± 0.077; m2 = -1.94 ± 0.10; PC2 = 1.65 ± 0.31; bp2 =

1.55 ± 0.21. The estimated parameters for the best fit

shown in figure 22(D) were: Econ = 98.9 ± 4.5; IC50,1 =

9.49 ± 1.2; IC50,2 = 0.947 ± 0.059; m1 = -1.00 ± 0.064;

m2 = -1.92 ± 0.066; PC1 = 44.8 ± 5.0; bp1 = 1.18 ± 0.16.
Because the fit was good for both reduced rnodels, the

interaction parameters, PC1, PC2, were both positive, and
their 95% confidence intervals did not encompass zero, the

conclusion is Loewe synergism.

I fD2\l’p2

Di�1+-) ____________
1= � E \1imi�

IC501�E _ E)

There are many other parametric response surface mod-

els that could be applied to the common data set.
Hewlett (1969) provides a general framework for deny-

ing many specific, potentially useful, rnultiyariate con-
centration-effect combined-action models. More re-
cently, Machado and Robinson (1994) have reviewed this

set of combined-action models, plus the general forms of
Eqs. 5, 29, and an original model, Eq. 30. Eq. 30 has a
single interaction parameter, which is called ij. Unfor-

tunately, like Eq.28, Eq. 30 has the disadvantage of
having isobols lie outside the unit square ofthe graph of
D�/IDX,2 vs. D1/ID�,1 for values of’r� from -oo to -0.333 and
from 1 to w (}thjpJ�j� and Greco, 1994).

1=(1+ii)1
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SEARCH FOR SYNERGY 367

(b) they reduce the full data set from an experiment to

a smaller set of parameters, along with uncertainty es-

timates.
(c) they facilitate prediction ofthe response under new

conditions.

(d) they are appropriate for complex situations, such

as three-, four-, and five-drug combinations.

(e) they aid in experimental design, including the de-

sign of complex experiments. Also, they tend to be tol-

erant of a wide spectrum of designs.

(f) they have the potential to explain, in intimate

detail, all of the characteristics of a complex system, and

thereby facilitate a deep understanding of the system.

(g) they are objective (relatively), rigorous, and con-

sistent with modern statistical theory. In addition to the

brief statistical summary provided for the fits of Eq. 5, 28,

and 29 to the common data set, there are other use-

fill statistical diagnostics available, including overall good-
ness offit statistics, confidence envelopes around the fitted

surface, and residual (functions of the difference between

the actual and fitted data) analyses (e.g., McCullagh and

Nelder 1989; Seber and Wild, 1989; Bates and Watts, 1988;

Carter et al., 1986; Machado and Robinson, 1994).

(h) parametric 3-D concentration-effect models may be

used as the pharmacodynamic component of composite

pharrnacokinetic-pharmacodynamic models, to be used

for the clinical study of the disposition and effect of drug

combinations.
(i) finally, as described in Section III, response surface

approaches are useful in explaining the similarities and

differences among other rival approaches to the assess-

ment of combined-action.

The four panels of figure 22 look very similar. From

the statistics provided for the fit of Eqs. 5, 28 and 29 to

the common data set, it would be difficult to choose the

best structural model. To a great extent, the exact form

of combined-action models is arbitrary, and consider-

ations other than the goodness of fit of a model to a

specific data set, must be used to decide upon a modeling

framework. These criteria include:

(a) a model should allow the “slope” for each agent’s
individual concentration-effect curve to be different; this

is allowed by Eqs. 5, 28, 29, 30.

(b) it is desirable to allow each agent’s individual

concentration-effect curve to have a different functional
form; however, the need for such a model seldom arises.

(c) the model should be one from a hierarchical set,

which allows expansion and reduction of models by inclu-

sion and deletion of expressions and parameters, in a log-
ical, hierarchical manner. For example, a model might be

expanded to accommodate more than two agents, or to
describe simultaneous Loewe synergism and Loewe antag-

onism in different regions of the concentration-effect sur-

face, and reduced to describe an agent that increases the

pharmacological effect of a second agent, but which has no

effect by itself(synergism, see table 1).

(d) the simulation of the model should present no

unsolvable numerical problems. For example, Eqs. 5,

28-30 all require appropriate one-dimensional root find-
ers (e.g., Thisted, 1988), but these are easily pro-
grammed, and have been found to be reliable.

(e) if normalized isobols [e.g., fig. 8(C)] for typical data
increase in bowing at higher levels of inhibition, then
this characteristic should be intrinsic to the model.

( [) a model should have the fewest parameters possi-

ble to adequately describe combined-action data.

(g) it is desirable for the parameters to have some geo-
metrical meaning; i.e., upon hearing of the values of a

model’s parameters, an experienced researcher should be

able to mentally picture 2-D and 3-D concentration-effect
curves. This would be true for Eqs. 5 and 28 through 30.

(h) it is desirable for the model to follow the correct

course, even in regions for which there is no data. In
other words, cautious extrapolation should be possible.

(i) the modeling paradigm should allow the combining
of a 3-D concentration-effect structural model, such as
Eqs. 5 and 28 through 30, with an appropriate random

model, for fitting data with modern statistical ap-

proaches, such as maximum likelihood estimation.

(j) in general, the structural model should closely

follow the overall average data, without following ran-

dom fluctuations.
(k) the isobols for the model should lie within the unit

square ofthe graph ofD�JIDx2 vs. D1/ID�,1 for all values
of the interaction parameter(s). This last criteria is not
met by Eqs. 28 and 30.

A critical area of future research will be the deriva-

tion, collection, and comparison of rival multivariate
parametric concentration-effect combined-action mod-
els. A comprehensive critical comparison of rival models

(e.g., Eqs. 5 and 28 through 30) is beyond the scope of
this review. Machado and Robinson (1994) present one

of the first such critical reviews; our group is also cur-
rently working in this area (Khinkis and Greco, 1994).

Although the field of response surface modeling of agent

interactions has old roots (e.g., Finney, 1952), only in
recent years has the availability of computer hardware

and software made it into a practical, universally impor-

tant discipline.
The disadvantages of fitting 3-D parametric concen-

tration-effect models to data include:
(a) there are an infinite number of plausible paramet-

ric models; it may be difficult to choose among rival

models. Different rival models may lead to different

conclusions. The parametric modeling paradigm is still
evolving; an analysis of data with a current model might
be proven to be suboptimal at a later time.

(b) the proper fitting of these models to data requires
statistical and computing expertise and adequate corn-

puter hardware and software. However, the acquisition
of these skills and tools is increasing among laboratory

scientists, and, in our view, is very cost-effective. In
addition, as an alternate solution, both initial and long-
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indirectly with a numerical procedure.

P(Y = : � �t�::l,�- ,.3,)fl(lY)

Dm

D1 D2
1= � 1/m,+ � Jim2

Dm1 Dm2
l-�L 1-ft

[31]

[32]

[33]

�.L (L12m,+]i2m2)

Dm1Dm2
i-IL

Rival approaches for the assessment of combined-action

when the response is quantal (proportions of success!
failure) will be compared in a manner similar to the
comparison in Section V of rival approaches for corn-

bined-action when the response is a continuous mea-

sure. A simulated data set for a pair of inhibitory drugs,
listed in table 4, was generated by first calculating

IL with Eq. 33 with parameters, IC50,1 = 10, IC50,2 = 1,
m1 = -1, m2 = -2, a = 1; and then entering IL� along with
n into a binomial random number generator from the

Statgraphics Software Package (STSC Inc., 1988). This

data set will be analyzed with three different ap-
proaches, the approach of Gessner (1974), the fitting of
the parametric response surface model, Eq. 33 (Greco
and Lawrence, 1988) to the full data set, and the fitting

of the multivariate linear logistic model (Cox, 1970), Eq.
34, to the full data set (e.g., Carter et al., 1983, 1988;
Brunden et al., 1988).

- exp(�0 + f31D1 + 132D2 + /312D1D2)
IL�1+exp(p+j�D+p�j�+pDD) [

Many of the methods for analyzing continuous corn-

bined-action data, described in Section V, could be used,

and have been previously used, for analyzing proportion
data. If one merely calculates the proportions of survi-
vors from table 4 as decimal numbers and then treats
these numbers as continuous data, then methods E.i

through E.11 could be directly applied without any ad-
ditional complications. However, the variation pattern
(probability distribution) of proportion data is funda-
mentally different from that for typical continuous bio-

logical data. For proportion data, usually the numbers of
survivors and the total numbers of organisms undergo-
ing a treatment is known without error. The variation in
responses is usually caused by the fundamental nature

of discrete binary responses; the variation is usually

wider in the ID50 range of the concentration-effect curve

368 GRECO ET AL.

term collaborations between laboratory and quantita-

tive scientists can be very Loewe synergistic.

(c) the links between empirical models of combined-

action, such as Eqs. 5 and 28 through 30, and theoretical

mechanistic models ofmolecular, biochemical, and phys-

iological systems have not been systematically made. In

other words, after one makes a rigorous claim of, let’s

say, Loewe synergism, it is in no way obvious what this

implies regarding the mechanistic interaction of two

agents. Some work has been done in this field (e.g.,

Werkheiser et al., 1973; Jackson, 1980, 1984, 1991,

1992, 1993; Bravo et al., 1992). However, this critical

research area is in its infancy.

%TI. Comparison of Rival Approaches for Discrete

Success/Failure Data +

This section will discuss approaches to the assessment

of the combined-action of agents, in which the measured

or observed response is binary (quantal); i.e., it is suc-

cess or failure, yes or no, dead or alive, on or off, 0 or 1.

The data is often grouped by treatment and is expressed

as a proportion of successes; e.g., five successes of eight

trials, or 0.625. Most of the material in this section is

from Greco (1989). A random model that describes the

statistical variation in success/failure data is the Ber-

noulli distribution, and one that describes the variation

in proportion data is the binomial distribution (Larson,

1982). Figure 3 showed a concentration-effect structural

curve with binomial variation about one point on the

curve. A formula for the binomial model is Eq. 31, in

which n is the number of attempts in a binomial trial, k

is the number of successes, Y is the proportion of suc-

cesses (Y = k/n), y is a particular value of Y (y = 0, 1/n,

2/n, . . . , 1), i,t is the mean or expected value of Y, P(Y =

y) is the probability that the general Y variable will

equal the particular value y, and ( ) is the combination of

n things taken ny at a time. [Note: Eq. 31 is different

from but equivalent to the more common form of the

binomial distribution equation (e.g., Larson, 1982) not

shown here. We reparameterized the more common form

into Eq. 31 to facilitate the combining of structural with

random models.] Because the overall mean or expected

value of Y is merely the value of the structural model,

structural models for success/failure concentration-

effect phenomena can be generated by simply substitut-

ing �t for E in any of the structural concentration-effect

models previously described in this paper for continuous

data. For example, the Hill model can be expressed as

Eq. 32, and our flagship combined-action model can be

expressed as Eq. 33. Note that the Econ parameter has

been constrained to be the constant, 1, in Eqs. 32 and 33.

In order to make a composite structural-random model

for data fitting, the structural expression for p. is in-

serted into the binomial model, Eq. 31, either directly or
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TABLE 4

Data set, with a binary (proportion) response variable, used for

comparison of rival data analysis approaches

ett and Hewlett, 1948, 1952, 1967). (It seems that sys-

tems with quantal responses were of more interest to
. . . .

statisticians, whereas systems with continuous re-
sponses have been of more interest to pharmacologists.)

Specific approaches and models of these pioneers in the
field of combined-action assessment will not be reviewed
in this paper. However, many of their concepts, ap-

proaches and models form the basis of the three ap-

D D Number of Total number of
survlvors* orgamsms

0.1 0 100 100� g � �gg
1#{149} 0 96 100
3 0 72 100 proaches that will be compared.
5 0 59 100

10 0 57 100 A. Approach ofGessner (1974)

�g � � �g
100 0 13 100

Our interpretation of the method of Gessner (1974)
first consists of fitting appropriate single agent models

0 0.01 100 100 to the data for agent 1 alone, agent 2 alone, and fixed
0 0.03 100 100

0 0.05 99 100g � � �

0 0:5 72 100

ratios of D1�.D2. Gessner (1974) recommends the probit

model (e.g., Finney, 1952), Eq. 35, for this purpose; how-
ever, we also explored the use of the univariate linear
logistic model with ln(D) as the input, Eq. 36, and the

0 1 46 100 univariate linear logistic model with D as the input, Eq.
0 3 6 100 37. Note that Eq. 32 and 36 are different parameteriza-
0 5 3 100

� 1 01 99 �gg
0:3 0:03 97 100

tions of the same fundamental model, in which 13o

-mln(Dm) and 13i = m. These three models were fit to the

data for drug 1 alone, drug 2 alone, and the 10: 1 mixture

0.5 0.05 94 100 from table 4, with maximum likelihood estimation via
1 0.1 87 100 nonlinear least squares (Jennrich and Moore, 1975),
3 0.3 59 100

1� � � �gg
30 3 7 100

with the software package, PCNONLIN (Statistical

Consultants, Inc., 1986), on an MSDOS-compatible mi-
crocomputer. The best fit of Eq. 32, and the equivalent

50 5 2 100 model, Eq. 36, to the three sets of data points from the
100 10 0 100 common 30-point data set, is shown in figure 27(A). The

best fits ofEqs. 35 and 37 are shown in figures 27(B) and* The number of survivors in column 3 was generated by (a)

calculating �L with Eq. 33 with parameters, IC50,1 = 10, IC50,2 = 1, 27(C), respectively. The fits look good for Eqs. 32, 36,
m1 = - 1, m2 = -2, a = 1; then entering �, along with n (the total

number of organisms, equal to 100) into a binomial random number

generator from the Statgraphics Software Package (STSC Inc.

1986).

and 35, but not for Eq. 37. The parameter estimates ±

standard errors for the fits of these four models were:

(for Eq. 32, drug 1, Dm = 10.7 ± 0.99, m = -0.982 ±

0.060; drug 2, Dm = 0.895 ± 0.056, m = -1.99 ± 0.14;

drug 1+2, Dm = 4.36 ± 0.30, m = -1.59 ± 0.10). (For Eq.

and smaller near the two ends ofthe curve. Proportions 36, drug 1, 13� = 2.33 ± 0.16, � = -0.982 ± 0.060; drug

above 1 and below 0 do not exist. In contrast, continuous 2, I3o 0.220 ± 0.13, I3� 1.99 ± 0.14; drug 1+2, I3o
biological data often follow bell-shaped normal distribu- 2.34 ± 0.19, f3� -1.59 ± 0.10). (For Eq. 35, drug 1, /3� =

tions, with larger variances associated with larger mea- 6.36 ± 0.084, j3� -1.32 ± 0.072; drug 2, (3� = 4.90 ±

surements (proportional error, constant coefficient of 0.072, j3� -2.72 ± 0.17; drug 1+2, f3� = 6.35 ± 0.10,

variation). Individual measurements (% control) both 13i -2.12 ± 0.12). (For Eq. 37, drug 1, !3o 1.61 ± 0.10,

above 100% and below 0% often occur. Proportions will 13i -0.0577 ± 0.0043; drug 2, 13o 2.55 ± 0.14, �

tend to become normally distributed as n becomes large, -1.67 ± 0.13; drug 1+2, (3�, = 2.52 ± 0.16, (3� = -0.403 ±

and as the true proportion tends away from the ends of 0.032). None of the 95% confidence intervals for any of

the range, 0 and 1. Methods, E.1 through E.1i, which the parameters for any ofthe models encompassed zero.

ignore the true random component of the data, will only
. .

be, at best, approximately correct for binary data. How-

j),,, � � � �
L LOU1b�ILJ i�o i-’i og

ever, they can provide very useful preliminary explor-
atory procedures. Nonetheless, only approaches that

fully exploit the binary nature of the data will be corn-

[36]

pared in this section.
Much of the early work on the problem of combined-

action of agents was focused on biological systems with

[37]

quantal responses (e.g., Bliss, 1939; Finney, 1952, 1971; The second stage of the method of Gessner (1974) is to
Hewlett and Plackett, 1959, 1979; Hewlett, 1969; Plack- plot the estimated Dm (ID50) values, along with their
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- exp(/3� + �31ln(D))
IL �, � exp(�30 + �1ln(D))

exp(130 + �1D)
IL � � exp(/30 + �31D)
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FIG. 28. Further isobolographic analysis of data from figure 27,

panels (A), (B), using an interpretation of the approach of Gessner

(1974).
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FIG. 27. Fitted curves of various models to the simulated data

from table 4. See details in the text. 0 4 8 2 6 20 24 28 32

[ Drug 1]

FIG. 29. Further isobolographic analysis of data from figure 27,

panel (C), using an interpretation ofthe approach ofGessner (1974).
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95% confidence intervals, for drug 1 alone, drug 2 alone,

and for the mixture, on isobolograms. Figure 28 shows
the isobolograms for the fits ofEqs. 32, 35 and 36, which
all coincide, and figure 29 shows the isobologram for the

fit of Eq. 37. The dashed lines connecting the ends of the
95% confidence intervals for the 1D50’s of drug 1 alone

and drug 2 alone define a Loewe additivity region. Be-
cause the 95% confidence interval for the 10:1 mixture of
drug 1 +2 intersects the Loewe additivity region, a con-

clusion of Loewe additivity is made. In contrast, the
isobologram replot for the fit of Eq. 37, figure 29, mdi-

cates Loewe synergism. Interestingly, the poor fit of Eq.
37 to the data resulted in poor estimates of the 1D50’s for

each drug alone, and this lead to the “correct” claim of

Loewe synergism. The overall conclusion for the method
of Gessner (1974), based upon the fits of Eqs. 32, 35 or

36, and the isobolograrn replot in figure 28, is Loewe

additivity.

1.0

__ 0.8
C�J

�0.6

�0.4

It is also clear that the linear logistic model without

the logarithmic transformation of the dose, Eq. 37, does

not seem to have the ideal shape for typical concentra-

tion-effect data. It seems to miss points near 100% sur-

vival, and misses points for concentration-effect curves

with relatively shallow slopes (around m = -1).

The advantages of the method of Gessner (1974) in-

dude:

(a) the underlying null reference model is Loewe ad-

ditivity.

(b) the approach takes into account in an appropriate

manner, the binomial variation of proportion data.

(c) the approach allows the slopes of the individual

concentration-effect curves to be different.
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(d) the derivation and application of complex full corn-

bined-action models are not necessary.
(e the isobologram replot is visual and intuitive.

([) uncertainty measures, the 95% confidence inter-
vals about the ID50s, are included in the analysis.

(g) the approach can accommodate interspersed re-
gions of Loewe synergism and antagonism.

(h) the general concepts of estimating ID50s, along

with 95% confidence intervals, and making a replot

isobologram, are very general, and could be applied to

continuous data.

(i) the approach is relatively easy to implement with
standard software.

(j) the approach is an excellent front-end for more
advanced model-fitting approaches and may provide the
best final analysis for complex situations in which the
degree of Loewe synergism and Loewe antagonism var-
ies across the 3-D concentration-effect surface.

The disadvantages include:

(a) the additivity region bounded by the dashed lines

connecting the ends of the 95% confidence intervals of
the individual agent ID50s was not created with a rigor-

ous statistical derivation. The additivity region will tend
to be too wide, too conservative, resulting in rejection of
true Loewe synergism and Loewe antagonism too often.
More realistic confidence bounds, based upon modern

statistical theory, have been derived by Carter’s group
(Carter et al., 1986, 1988; Gennings et al., 1990).

(b) it is likely that the fitting of data for a fixed ratio of
D1.D2 by concentration-effect models appropriate for

single agents, such as Eqs. 32, 35, or 36, will result in

biases, similar to the problems described for fitting the
median-effect model to fixed ratio data, described in

Appendix B, and in figure 17. We predict that the misfits
will become more severe as the difference in slope pa-

rameters increases and as the intensity of interaction

increases, as shown for the median-effect model, in fig-

ure 17. However, we predict, as indicated for the medi-
an-effect model in Appendix B, that the problems will

tend to be minor if one focuses mainly on the ID50s.
(c) maximum use is not made ofthe data, as compared

with approaches centered on the fitting offull combined-
action concentration-effect surfaces to all of the data

simultaneously.
(d) summary measures of the intensity of interaction,

along with uncertainty measures, are not provided.
An additional criticism-with which we take issue-

leveled at the method of Gessner (1974) is that the

approach does not adjust the 95% Loewe additivity re-
gion to take into account the problem ofmaking multiple

comparisons of ID50s from several separate fixed ratio
concentration-effect curves (Carter et al., 1988). Carter’s

group argues: “The procedure described suffers from the
same problem associated with making multiple [Stu-

dent’s] t-tests to compare the means of a number of
treatment groups. In such cases, the probability of in-
correctly rejecting the null hypothesis of equality of

treatment means is inflated. Here, the null hypothesis is
one of additivity. Hence, the probability of incorrectly

rejecting additivity and thereby concluding synergism is

inflated.”
We respond to this criticism by pointing out that,

when applying Gessner’s (1974) approach to datasets
with several fixed ratios of D1D2, the pattern of ID50

confidence intervals is taken into account; albeit, in an

ad hoc manner, when making a conclusion. Each ID50

confidence interval is not meant to be interpreted in

isolation. For example, if there were 10 different fixed

ratios for our common data set, and if their �j�5O confi-

dence intervals were plotted in figure 29, and if a ran-
dorn assortment of significant Loewe synergism and
Loewe antagonism were demonstrated, one would con-

dude either that the combined-action was very complex
or that some errors were made in conducting the exper-
iment. The experiment would probably be repeated. If

only 1 of 10 fixed ratios showed significant Loewe syn-
ergism, with no apparent trend in the ID50 estimates,

then the Loewe synergism would be considered sugges-

tive at best, possibly a random artifact, and, if possible,

the experiment would be repeated with larger sample

sizes, especially in the region of suspected Loewe syner-
gism. However, with the more probable result of consis-
tent patterns of Loewe synergism or Loewe antagonism,
(e.g., Gessner, 1988), the clusters of Loewe synergistic

and/or Loewe antagonistic ID50 intervals will reinforce

each other, leading to a more conservative, not to a
more liberal, conclusion. The use of improperly inflated

P-values, and conversely, improperly deflated 95% con-

fidence intervals, caused by the making of multiple sta-
tistical comparisons, is certainly an important general
problem in biostatistics (Miller, 1981). However, the

problem is not relevant to the application of Gessner’s

approach when rationally applied to agent combination

data.

B. Parametric Response Surface Approaches

Just as for continuous data, full 3-D combined-action
concentration-effect models can be fit to proportion data,

to assess the nature and intensity of agent interaction.
The use of two different structural models will be dem-

onstrated: our flagship combined-action model, Eq. 33,
and the multivariate linear logistic model, Eq. 34. In
principle, the general form of Eq. 28, Eq. 29 (Weinstein

et al., 1990), Eq. 30 (Machado and Robinson, 1994), and
any of the models reviewed by Hewlett (1969) could also
be tried, but these are not included in this part of the

review.
1. Model ofGreco and Lawrence (1988). Eq. 33 was fit

to the full common data set in table 4 with maximum
likelihood estimation in the same manner as described
in Section VI.A. The best fit surface is shown as three

curves in figure 27(E). The fitted surface hugs the raw

data, with a random distribution of points about the

 at T
ham

m
asart U

niversity on D
ecem

ber 8, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


Dose (log scale)

0

0.01 0.03 0.1 0.3 1 3 10 30 100 300

-20

I -40
I-

...- -60

-80

-100
0 50 100 150 200 250 300

Dose

FIG. 30. Problems with use of logistic function for representing

dose-response phenomena.

[38]

372 GRECO ET AL.

surface. The parameter estimates ± standard errors
were: Dm1 = 11.2 ± 0.99, m1 = -0.995 ± 0.052, Dm2 =

0.905 ± 0.056, m2 = -2.05 ± 0.14, a = 0.903 ± 0.46. The

95% confidence interval for a was from 0.001 to 1.80.
Therefore, Loewe synergism is claimed.

2. Multivariate linear logistic model. The use of the

multivariate linear logistic model (Cox, 1970) is very
popular in the analysis of clinical trial data and in Epi-

demiology, in cases in which the response variable is

binary (Hosmer and Lemeshow, 1989). It is the most
popular response surface model that has been routinely

applied to quantal combined-action data (e.g., Carter et
al., 1983, 1988; Brunden et al., 1988). Eq. 34, the mul-

tivariate linear logistic model for two agents, includes
one interaction parameter, 1312. When 1312 is positive,

Loewe synergism is indicated; when 1312 is negative,

Loewe antagonism is indicated, and when 1312 is zero,
Loewe additivity is indicated. Eq. 34 was fit to the corn-
mon data set in table 4 with the maximum likelihood

approach described in Section VI.A. The fitted surface is

shown in figure 27(D). The parameter estimates were:

13o 2.03 ± 0.071, f3� = 0.0713 ± 0.0043, P2 1.54 ±
0.11, �12 -0.0837 ± 0.025. Because the 95% confidence
interval for �12 is from -0.133 to -0.0347, Loewe antag-
onism might be concluded. However, the best fit of Eq.
34 to the data, shown in figure 27(D), does not look very

good. First, the surface misses the points near 100%
survival. Second, because the linear logistic model con-

strains agent 1 alone, agent 2 alone, and the 10:1 mix-
ture all to have the same dose-effect slope (on a logarith-
mid dose scale), the data points are not randomly

scattered about the curves; the surface systematically
misses most of the data. These two characteristics make
the multivaniate linear logistic model suboptimal for
assessing the combined-action of agents in many sys-
tems.

This second problem with the use of the linear logistic
model, the constraining of the slopes of the concentra-

tion-effect curves, may have profound implications for

the use of the multiple linear logistic model in other
fields. Therefore, a cleaner, simpler example ofthe prob-
lem, illustrated in figure 30, is presented here. The four

curves, a, b, c and d for both panels, A and B, were

simulated with the simple linear logistic model, Eq. 37.
For curve a, I3o 1.5, � -2.0; for curve b, 13o 3.0,

l3� = -2.0; for curve c, 13o 1.5, frj -0.1; for curve d,

13� = 3.0, f3� = -0.1. In panel A, IL is plotted against agent
dose on a common logarithmic scale; whereas, in panel

B, the logit of IL i5 plotted against agent dose on a linear
scale. For each of these curves, 45 points, indicated by

symbols, were simulated, and then the points connected
via the spline option in SigmaPlot 2.0 (Jandel Scientific,
1994). The combined data for curves b and c (n = 90)

were assumed to represent the proportion of organisms

remaining after treatment with agent 1 and agent 2,
respectively. A sample size of 1000 was assumed for each

of the 90 treatment groups. No binomial variation was

introduced. This set of data was then fit with Eq. 38, a
multiple linear logistic model with three estimable pa-
rameters, 1�o, P1’ and 132, but no 1’�12 interaction param-

eter, with the LR program in BMDP (Dixon et al., 1990).
This model assumes a common 13o term, a � term for

agent 1, and a �2 term for agent 2. The best fit estimates
(± standard error) were: 13o 1.93 ± 0.013; f3� = -1.36 ±

0.016; and L�2 -0.122 ± 0.0015. These parameter esti-
mates were then used to simulate curves e and fin both

panels (A) and (B).

exp(130 + �31D1 + f32D2)
IL � � � exp(�30 + j31D1 + f32D2)

Note that in panel (A), the two members of each curve
pair, a and c, b and d, and e and f share the same shape:
they are parallel; they have the same dose-effect slope
(on a logarithmic dose scale). For example, at every

effect level (except IL = i and IL = 0), the dose for curve
c is 20-fold higher than the corresponding dose on curve

a (the ratio oftheir ID50s). This is caused by the same 13o
term for each respective pair. The lateral separation of
the curves for each pair is because of different 13� terms.

Because the ID50 is equal to -.f3�y’13�, it is clear that a
larger 13oterm will shift the concentration-effect curve to
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the right, and a larger-in-magnitude 13� term will shift
the curve to the left. Note that in panel B, that curve

pairs a and b, and c and d consist of parallel lines. This
is caused by the same 13i terms for each respective pair.
There are common y-intercepts for curve pairs a and c, b

and d, and e and [, in panel B, but this cannot be visually

detected on the scale with which the graph is drawn.
When Eq. 38 is fit to the combined data from curves b

and c, there are only three parameters available to rep-
resent the information that was originally contained in

four parameters, so compromises were necessary. Note

that the estimated f3� for the combined data, 1.93, is a
compromise between the 13o terms for the individual

concentration-effect curves, 1.5 and 3.0. Also note that
the concentration-effect slopes in panel (A) for curves e

and [ appear to be the same, but these curves are differ-
ent from those of a and c, and of b and d. The estimated

I3� term for curve [, -0.122, is somewhat different from
the f3� term of curve c, -0.1; the estimated 132 term for

curve e, -1.36, is somewhat different from the j3� term of
curve b, -2.0. The ID50s for curves e and f, 1.42 and 15.8,

respectively, are close to those ofcurves, b and c, 1.5 and

15, respectively. Curves e and [ seem to attempt to

closely follow the data from curves b and c, but fail,
because the information contained in four parameters

cannot be expressed completely by three parameters.
The advantages and disadvantages of fitting 3-D corn-

bined-action concentration-effect surfaces to proportion
data are essentially the same as listed for continuous

data. However, as seen with the experience of the mul-
tivariate linear logistic model, one must be very careful
about choosing an appropriate combined-action model.

VII. Overall Conclusions on Rival Approaches

Tables 5 and 6 summarize the characteristics ofthe 13

rival approaches for assessing combined-action for con-

tinuous data, and the three rival approaches for assess-
ing combined-action for quantal data, respectively. In
addition, they also provide a condensed summary of the

conclusions of each analysis. For the originators of the
13 approaches for continuous data, there is about an

equal division between those who have Loewe additivity
as their null reference model and those that have Bliss
independence as their null reference model. Only the
method of Steel and Peckharn (1979) and the method of
Chou and Talalay (1984) use additional models, Eq. 20
and Eq. 18, respectively, as integral null reference mod-

els for their approaches.
With today’s universal accessibility to powerful, inex-

pensive computers with useful software, there is no good
reason for an analysis of combined-action data to lack a

graphical component. All of the methods that require
graphics and advanced statistical procedures have ei-

ther already been implemented into stand-alone soft-

ware packages or are “easily” implemented with stan-
dard general statistical and graphical software.

At first glance, the conclusions of the authors of the

13 different approaches seem to be quite varied. How-

ever, the common continuous data set was simulated

with Eq. 5 to contain a small degree of Loewe syner-

gism (true a = 0.5), which corresponds in most regions

of the 3-D concentration-effect surface to a small de-

gree of Bliss antagonism. Methods 1, 2, 4, 5, 8, and 10

through 12b yielded conclusions consistent with their

respective “no interaction” reference models. This was

also true for method 3, the method of Valeriote and

Lin (1975), which further divides Bliss antagonism

into three subcategories, including “subadditivity.” In

addition, because the true combined-action was be-

tween Loewe additivity and Bliss independence, ideal

data would fall into the additivity envelope of method

6, that of Steel and Peckharn (1979), and thus the

conclusion of “additivity” for this approach is also

consistent. The Bliss independence surface approach

failed to detect the small amount of Bliss antagonism.

Of the 13 different approaches, only the method of

Chou and Talalay (1984) gave a conclusion opposite to

the one expected, based on its respective null refer-

ence model(s). This is because of artifacts inherent in

the calculation of the CI vs. [a plot.

The three approaches to the analysis of combined-

action for quantal data listed in table 6 all share Loewe

additivity as the null reference model. The method of

Gessner (1974) is somewhat conservative and just

missed the correct conclusion of a small degree of Loewe

synergism. Not surprisingly, our flagship model that

was used in the simulation of the common proportion

data set, table 4, fit the data well, but just barely de-

tected the small degree of synergism (true a = 1), just

above the noise level ofthe data. The multivariate linear

logistic model arrived at the wrong conclusion, because

it could not mold itself well to the data.

VIII. Experimental Design

The main decisions that must be made regarding ex-

perimental design are: (a) where to choose the concen-

trations, (b) numbers of replicates, and (c) numbers of

experiments. These seemingly simple questions have

spawned many full careers for statisticians, who have

delved deeply into them to reveal their inherent corn-

plexity. The adoption of a response surface paradigm for

the assessment of combined-action of agents facilitates

the understanding of formal statistical experimental de-

sign. First, the experimenter must decide whether he is

in an exploratory or a confirmatory mode. Screening

experiments (exploratory mode) should first include, for

each agent individually, agent concentrations that span

the anticipated response region. Logarithmic spacing of

the concentrations over a thousand-fold to a million-fold

range is probably necessary, depending upon the prey-
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Null “no
Approach interaction”

reference model*

Software
availability

Graphical
approach?

TABLE 6

Comparison ofconclusions from the application to the same simulated data set (representative example ofdata from pure small synergism

with binomial variation, Table 4), of three rival approaches for assessing the nature and intensity ofagent combined-action

“Advanced”
statistical
approach

1. Method of (Gessner, 1974) LA.DD YS, YG Y N Loewe additivity is claimed, LADD

but with a hint of small

Loewe synergism.

2a. Parametric response surface LADD YG Y Y Small, borderline significant LSYN

approach (Greco and Lawrence, 1988) Loewe synergism (P < 0.05).

a 0.903 ± 0.46

2b. Parametric response surface LADD YS Y Y Significant Loewe antagonism LANT

approach, multivariate logistic model (P < 0.05).

(e.g., Carter et al, 1988)

* The abbreviations used throughout Table 6 are the same as used in Table 5.
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Short
Long conclusion conclusion

ous knowledge of the researcher about the concen-
tration-effect behavior of the compound. After the mdi-
vidual agent concentration-effect curves are well char-

acterized, a combination experiment should be

conducted that repeats the single agent data points and
which includes a set of combination points. Either a full

factorial (checkerboard) design as suggested by Prichard

and Shipman (1990), or a single ray (fixed-ratio) design,
or a multiple ray design, all with logarithmically spaced
concentrations, might be appropriate. If a complex 3-D

concentration-effect surface is anticipated, then the en-
tire interesting region of agent 1 and agent 2 concentra-

tions should be sampled, either with a checkerboard or

multiple ray design. However, if a well behaved 3-D
concentration-effect surface is anticipated, and the spe-

cific combination being studied is only one of many can-
didates being screened, then a single ray may be suffi-

cient. Composite designs consisting of a checkerboard

and some rays might also be used. Of course, if the
intended data analysis approach is firmly tied to a par-

ticular design, then that design will have to be used.
After the researcher has completed the analysis of the

first mixture experiment in exploratory mode, he/she

may want to switch to confirmatory mode. The repeat of

the combination experiment may use the same design as
in the exploratory experiment, but probably the knowl-

edge gained from the first run will help to refine the
design for the second run. If a complex 3-D concentra-
tion-effect surface was found in the exploratory experi-
ment, then agent concentrations in the interesting re-
gions of the surface should be accented in the
confirmatory experiment. Increasing the numbers of
replicates probably also will be necessary. If a simple
3-D concentration-effect surface was found in the explor-
atory experiment, i.e., one with pure Loewe synergism or

Loewe antagonism, then a design that facilitates the

estimation of parameters with the smallest variance
might be appropriate. A single ray or a D-optirnal design
(Box and Lucas, 1959; Atkinson and Hunter, 1968; Sil-
vey, 1980; Fedorov, 1972; Greco and Thng, 1991) might

be indicated with many replicates.

There are many lettered-optirnality criteria for exper-
irnental design. Atkinson and Donev (1992) present a
recent comprehensive review. The D-optirnality crite-

rion has become popular for biological applications (e.g.,

Bezeau and Endrenyi, 1986; Greco et al., 1994). Reasons

for its popularity include: (a) ease of application; (b)
intuitiveness of its theoretical basis (For models nonlin-

ear in the parameters, D-optimality minimizes the lin-
ear approximation of the volume of the joint confidence
region of the parameters); (c) transformation of model

parameters does not alter designs (Fedorov, 1972).
Interestingly, the number of design points in a D-

optimal design is generally equal to the number of esti-

mable parameters (Atkinson and Hunter, 1968). For

example, if one assumes that Eq. 5, which contains 6
parameters, will adequately describe the 3-D combined-
action concentration-effect curve, then a D-optirnal de-
sign will include only six design points, with or without

replicates. A description of our algorithms for calculat-

ing D-optimal designs for agent combination studies is
included in Greco and Tung (1991) and Greco et al.

(1993).

The D-optimal designs may, at first, seem to be very
strange and potentially noninformative. For example,

for the continuous common data set listed in table 2,
which contains proportional error, the approximate D-

optimal design based upon the ideal parameters (Econ =

100, IC50,1 = 10, IC502 = 1, m1 = -1, m2 = -2, a = 0.5)
is (point 1, D1 = 0, D2 = 0; point 2, D1 = 1,000, D2 = 0;

point 3, D1 = 95, D2 = 0; point 4, D1 = 0, D2 = 1000;
point 5, D1 = 0, D2 = 3.08, point 6, D1 = 86.4, D2 = 8.73).
This D-optimal design is only approximate because the
assumption of pure proportional error (constant coeffi-

cient ofvariation) will drive many ofthe design points to

unrealistic infinite concentrations (Bezeau and Endre-
nyi, 1986). We have reduced unrealistically large con-
centrations to 1000. Even with this adjustment, the
D-optimal design still seems to be uninformative. (By

visually plotting the six D-optimal design points in fig-
ure 25, the reader will note that one point is at the very

top ofthe concentration-effect surface and that the other
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five are at the bottom! None of the points lie in the
middle region of the surface.) However, we have con-
ducted Monte-Carlo simulations to verif�y that this type

of D-optimal design results in the smallest variance for
the six model parameters when compared with factorial

and ray designs (Greco et al., 1994). We have also shown

that the variance of the parameter estimates is approx-
imately proportional to the reciprocal of the number of
replicates. This type of frugal experimental design may

have great potential for animal and human experiments,

in which the experimental units are very dear.
The point at which the Loewe additivity model and the

combined-action model are furthest apart in the vertical

direction may be an important design point; this point
may offer the maximum potential for discriminating

between the two models (Mannervick, 1982). From fig-

ure 10(C), it was shown for our flagship model, with
parameters (Econ = 100, IC50,1 = 1, IC50,2 = 1, m1 = -1,

m2 -2, a 5), that the largest vertical difference was
near the point, (IC50,1, IC50,2). In contrast, figure 9 mdi-

cates that the largest horizontal difference between

Loewe additivity and our combined-action model is at
infinite concentrations of both agents. This implies that

a pair of very large concentrations may be useful. These
two design points, based upon maximum model differ-
ences, may be added to other designs discussed above.

Formal statistical experimental design often includes

an interesting paradox: in order to design an experiment
well, you have to know the final answer well. However,

if you knew the final answer well, then you would not
have to conduct the experiment. This paradox is solved

with sequential experimentation; each experiment in a
sequence provides better information for the planning of
the subsequent experiment.

Ix. General Proposed Paradigm

Readers of this review may not be particularly happy
at this point. They may have become enlightened on the

subject of combined-action after following the discussion
of the different 3-D and 2-D representations of this phe-
nornena. They may have carefully read the descriptions

of the application of 13 rival approaches for assessing
combined-action for continuous data, and of 3 rival ap-
proaches for quantal data. They may have digested and

evaluated the long list of advantages and disadvantages
of each approach. They may now have a greater appre-
ciation of the similarities and differences among the
rival approaches reviewed in this paper. Finally, they

may have developed an understanding of the fundamen-

tal importance of mathematical models in the descrip-
tion and evaluation of complex systems. However, it is
probably not at all clear how to actually proceed with the

practical analysis of a data set from an experiment of
combined-action.

We recommend the following general approach. Be-

fore the combined-action experiment is conducted, the

concentration-effect curves for the individual agents
should be characterized well. Data for a combination
experiment can then be generated from either a factorial

design, from a fixed-ratio (ray) design, from a D-optimal
design, from a model discrimination design, or some
combination ofthe four. The numbers and distribution of

different rows and columns in the factorial design, the
numbers and distributions of rays in the fixed-ratio de-

sign, and the numbers of replicates, will depend upon
the importance of the anticipated result, the cost of each

experimental unit, and the degree of ignorance of the
shape of the full 3-D concentration-effect surface.

The overall best initial data analysis, which will work

with almost any conceivable, reasonable design, should
include a combination ofapproaches V.H., the method of
Berenbaum (1985), and V.1., the Bliss independence re-

sponse surface approach. First, a logical Loewe additiv-
ity model should be fit, with an appropriate curve-fitting

technique, to the data for agent 1 alone and agent 2
alone. Nonlinear regression should be used to fit models
to continuous data, and maximum likelihood procedures

used to fit models to quantal data. The 3-D Loewe addi-
tivity predicted surface should be shown in 3-D. Then
sprinkle the raw data points on the same graph, and

note the position of the points relative to the surface,
such as was done in figure 18(A). Then construct the
Bliss independence surface and sprinkle the raw data

points, such as was done in figure 18(B). Combining

Loewe additivity and Bliss independence surfaces on the

same 3-D graph may be useful. Also, various 2-D repre-
sentations ofthe 3-D surfaces, such as isobolograms, and
families of 2-D concentration-effect curves, with accom-

panying data points, may be useful. A confidence enve-

lope, adapted from suggestions of Carter et al. (1986,
1988), around the two surfaces might be used to discrim-
mate between true departures from the null reference

models and random variation. Note that our suggested
approach has the flavor of the “additivity envelope”
method of Steel and Peckham (1979), but the correct

model for Loewe additivity is used to define one of the
boundaries, instead of Eq. 20. Only in rare cases will it

be difficult to find appropriate concentration-effect mod-
els to fit the concentration-effect data for the individual

agents.
After this initial analysis, a decision should be made

whether to derive and fit a full appropriate combined-

action concentration-effect model to all of the experi-
mental data simultaneously or to accept the initial anal-
ysis as the final answer. In many cases, it will be fruitful

to complete this last step. The final summary statistics
should include uncertainty measures around the final

parameter estimates, confidence envelopes around the
fitted surface, overall goodness of fit statistics, residual

analyses, and sets of 3-D and 2-D graphs. These sets of
graphs may include the 3-D combined-action concentra-
tion-effect surface along with the raw data, such as
figure 22, 3-D difference plots such as figure 10, 3-D
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combination index plots such as figure 9, 2-D isobolo- tion-effect model, Eq. 2, (equivalent to the median-effect
grams such as figure 23, 2-D families of concentration- equation of Chou and Talalay, Eq. 24) the appropriate
effect curves, such as figures 24 and 25, plus any other specific Bliss independence model would be Eq. 12 (fu =

informative graphical representations. Physical 3-D E/Econ).

models of combined-action concentration-effect surfaces
made with LEGO bricks (LEGO Systems Inc., Enfield, fi112 fU1fu2 [11]

CT) (Greco, 1991) or other materials can accent impor-

tant results.
fa12 = fa1 + fa2 - fa1fa2 [14]

To the best of our knowledge, a software package

dedicated exclusively to this whole composite approach
does not as yet exist. However, many general nonlinear
regression packages, which allow the coding of a one-

[2]

dimensional root finder for dealing with models in un-
closed form, and with accompanying graphics capabili-
ties, could be used to implement this approach. Such

packages available for microcomputers include: PC-
NONLIN (Statistical Consultants Inc., 1986), SAS (SAS

[a f D \�
� (jj� J [241

\‘ /

Institute Inc., 1987), MLAB (Civilized Software, Inc.,

1991), GAUSS (Aptech Systems Inc., 1991), and IMSL
(IMSL, 1989). There are many more packages available

for UNIX workstations, minicomputers, and mainframe
computers with adequate capabilities to implement this
full approach. Our group is currently developing an im-

,‘ D1 \mi/ D2 \m2

Econ( ) (
E = \ICso,l/ \ICso,2/ [12]

( ( D1 \mi\f ( D2 \m2

�1 + �i�IC ‘) )k�1 � �IC50 2)

,

plementation of the full approach, which has been de- However, the mutually nonexclusive model of Chou and
signed to work under the MicroSoft Windows operating Talalay (1981, 1984), Eq. 18, is not equivalent to the
system. Bliss independence model, except under the restrictive

Several critical areas for future research and develop- condition that the slope parameter, m, is equal to 1 (or to
ment in the field of the assessment of combined-action -1 by our convention ofmonotonically decreasing concen-
were pointed out in this review article: tration-effect curves). Eq. 19 is a specific nonlinear form

(a) the relationship between empirical models of corn- of Eq. 18. (Note that Eq. 19 is equivalent to our flagship
bined-action, and mechanistic theoretical models of bio- interaction model, Eq. 5, m1 = m2 = m, and a = 1.)
chemical and physiological systems should be explored. Chou and Talalay (1984) stressed this difference be-

(b) a library of combined-action models should be de- tween the Bliss independence model and their mutually
rived, collected, evaluated, and critically compared. nonexclusive model and concluded that the Bliss inde-

(c) the impact ofusing different experimental designs, pendence model is not appropriate for higher order sys-
especially D-optimal designs, should be evaluated, both tems (m > 1).
from theoretical and practical perspectives.

(d) user-friendly, inexpensive computer software
should be developed to facilitate the paradigm of exper-
imental design and data analysis approaches described

(t�’�\��m (�t�1Im � (f�1Im � (faifa2�m

Vu12) \fui) \fu2J \,fuifu2)

[18]
above. D1 D2 D1D2

=-+---+
Dm1 Dm2 Dm1Dm2

XI Appendix A. Derivation of a Model for Two
Mutually Nonexclusive Noncompetitive

Inhibitors for a Second Order System

A. Motivation

The concepts of Bliss independence and mutual non-

,

Econ( D1 � D2 � D1D2
\IC50,1 IC50,2 IC50,1IC50,2)

E - �, D1 D2 D1D2 \� [191
1+1 + +

\IC50,1 IC50,2 IC5#{231}j,1IC50,2

exclusivity, at first glance, seem to be the same. Equiv-

alent general forms for the classical Bliss independence We certainly agree that Eqs. 12 and 19 are not equiva-
model are Eqs. ii and 14, in which fur, fu2’ and [is12 are lent. It should be noted that the derivation of the mutu-
the fractions ofpossible response for drug 1, drug 2, and ally nonexclusive model (Chou and Talalay, 1981) was
the combination (e.g., % survival, %control) unaffected for multiple mutually nonexclusive reversible inhibitors
(Chou and Talalay, 1981, 1984), andfa1,fa2, andfa12 are of a single enzyme, in which the slope parameter, m, is
the fractions of possible response affected (e.g., % dead, the integral number of binding sites on the enzyme for
% inhibition) [fa(= 1 - fit)]. For the common case in each inhibitor, yet the application ofthe model has been
which each drug individually follows the Hill concentra- mainly to much more complex systems, such as cell
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tion for inhibition of higher order kinetic systems by a
single inhibitor.

fi12 flu fi2 I� 12
-=-+--=--+--- [CT11]
ft 12 fri ft2 ‘so,i 40,2

fi Irn
- = - [CT12]
fv �

fi 12 Ii 12
�= -+-- [CT17]
1b12 ‘so,i 150,2

which can be rewritten:

1
ft12 j� 12 [CT18]

1+ -+--

� ‘50,2

Even for the derivation of Eq. CT17, that for mutual

exclusivity, it is not entirely apparent to us how to
properly combine Eqs. CT11 and CT12. However, via

two other derivations not provided here, one based on
enzyme kinetics and another based on the ideas of Be-
renbaum (1985) and provided in Appendix A of Greco et

al. (1990), we verified that Eq. CT17, that for mutual
exclusivity, is correct.

Thus, the derivation of the mutually nonexclusive

model for two enzyme inhibitors provided by Chou and

Talalay (1981) is weak, incomplete, and suspicious. In
order to settle the matter, we provide below a complete

derivation for the case of two mutually nonexclusive,
noncompetitive inhibitors ofa single enzyme. We use the

same restrictive assumption used by Chou and Talalay
(i981) and also used in the derivation by Hill (1910)

that, for each inhibitor, which has two identical binding

sites on the enzyme, both of the two inhibitor molecules
bind to the enzyme in one step. It should be emphasized

that our goal is not to derive an alternate model for
mutual nonexclusivity to be used by the biomedical corn-
munity but rather to show that the Chou and Talalay

model was not derived correctly. We therefore provide
this one counterexample, for two mutually nonexclusive,
noncompetitive inhibitors, to refute the general model
for mutual nonexclusivity of Chou and Talalay (1981).

C. Assumptions of the Derivation of the Model for

Mutual Nonexclusivity for Two Noncompetitive Higher

Order inhibitors

1. The enzyme (E) has one active site where one sub-

strate molecule (5) may bind.

2. In addition to the active site for the substrate, there

are two binding sites for inhibitor 1 and two other bind-
ing sites for inhibitor 2. Any occupation of an inhibitor

site will prevent the substrate from being converted to
product.

378 GRECO ET AL.

cultures and batches of whole organisms, in which the
nonintegral slope parameter, m, is related to the width

of the tolerance distribution of the sensitivities of the

cells or organisms to the agent. It might be argued that
the difference between Eqs. 12 and 19 is caused by their

differences in origin. However, we will show below that

the primary reason that Bliss independence and mutu-

ally nonexciusivity are not equivalent is that the mutu-

ally nonexclusive model ofChou and Talalay (1981) was

not properly derived.

B. Elements of the Derivation of the Mutually

Nonexclusive Model for Higher Order Systems from

Chou and Talalay (1981)

To keep confusion to a minimum, we will use fi and ft
for the fractional inhibition and fractional velocity, re-

spectively, which are slightly different from the variable

symbols included in Chou and Talalay (1981). Also, in-

stead of using Chou and Talalay’s exact general equa-
tions for any number of enzyme inhibitors, we will list

specific equations for sets of two inhibitors. We will
designate Chou and Talalay’s equations with a CT pre-

fix, and use the equation number from Chou and Talalay

(1981).
The key suspicious step in the derivation of the mu-

tually nonexclusive model, Eq. CT22, appears on page

211 of Chou and Talalay (1981). It is stated:

Let us assume that m molecules of each of two mutu-

ally nonexclusive inhibitors bind to one molecule of en-

zyme. By analogy to Eqn (CT17) and addition ofthe term

for nonexclusivity [Eqn(CT21)] we obtain:

11 1/rn �a 1/rn ,c. 1/rn ,c. i-� 1/rn
/‘�12 _ /1�1 /�2 /11/12

fv12 fri +ft +f�ft

or

1
fv12 1/rn 1/rn 1/rn rn [CT221

i+{[�] +[�] � }
1

1’ T TT rn
11 ‘2 ‘1�2

1+ -+--+

Iso,1 150,2 150,1150,2

It is our view that merely stating, “by analogy to

Eqn(CT17) and addition of the term for nonexclusivity

[EQN(CT21)], we obtain:” does not constitute a convinc-

ing derivation. Eq. CT17, or the equivalent, Eq. CT18,

that for a mutually exclusive system was derived by
combining Eq. CT11, the general equation for mutual

exclusivity for multiple inhibitors in a first order system
with Eq. CT12, the general median-effect or Hill equa-
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3. Both inhibitor 1 and 2 are noncompetitive with the Also, let the maximum enzyme velocity, Vmax = k� [Er].

substrate; 2 molecules of inhibitor 1 plus two molecules of

inhibitor 2 may simultaneously bind to the enzyme,

whether the substrate has occupied the active site or not.

4. The affinity of inhibitor 1 for the enzyme, and the

[S ] [I� 12 1 ‘2 ‘� [ Ii I�F 12 ]2

j#{231}� � � [�] + L�J �DENOMA2=1+ - +

affinity of inhibitor 2 for the enzyme, is unaffected by

occupation of the active site by the substrate; thus, we

have classical or pure noncompetitive inhibition.

I S � I �‘ � I � 11 ‘2 � � S � � I� 121 ‘2 12
+ [�] L’�i � L�] [�] � [�] LKii][�j

S. The binding of inhibitor 1, I�, to its binding sites

does not influence the binding of inhibitor 2, ‘2’ to its

binding sites, and vice versa.

v S/Ks
[A3]

Vmax DENOMA3
6. When I� binds, two molecules bind at once; the same

for 12. [This is the critical controversial Hill assumption,

which was also made by Chou and Talalay (1981) in the

derivation of the median effect equation for a single

inhibitor.] In other words, the concentrations of enzyme

s. For a noncompetitive inhibitor, I5� = Ki (Chou,

1974). Therefore, all Kis are replaced with 150s. In addi-

tion, Eq. A3 is simplified to Eq. A4.

species, E, ES, E11I1, �2’2’ �i’i’2’2, ES1111, ESI�I2,

ESI1114J2, exist; but EI�, E�’2’ ESI1, ESI2, EI112, EI112I2,

F�’111I2, ES1112, ESI1I�I2, ESI1I1I2 are negligible and will

be assumed to not exist.

Vmax[S/Ks]/[1 + S/Ks]
v = �, 2 � ‘2 12 1 I� 12 12 2 [A4]

i + 1-] +
L’so,ij [�] [4�] [�]

D. Derivation

1. The general rules for deriving enzyme kinetic rate

equations from Segel (1975) are used.

2. The enzyme velocity (v) rate equation is written in

6. The fractional velocity, ft, is equal to the ratio of the

inhibited velocity, Eq. A4, divided by the uninhibited

velocity, equal to [Vmax S]/[Ks + 5]. After this operation

and some simplification, Eq. AS is the result.

terms ofthe rate constant for the formation ofproduct (kr)

and the enzyme-substrate complex concentration ([ES]):

v = k�[ES] [Al]

i,

ft = I� 2 ‘2 � #{149} [AS]
1 + 1�1 +

Vso,ij

2 7 �2 T 2
#{163}1 �2

+-

‘50,1 ‘50,2

[A2]
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3. The left side of the velocity equation is divided by

the concentration of total enzyme, [Er], and the right

side is divided by the equivalent sum of the concentra-

tions of all non-negligible enzyme species: (Note: The

denominators of Equations A2, A3 and A7 are too wide

to fit easily into an equation in one column of a journal

page. Therefore, each denominator has been defined by

the terms, DENOMA2, DENOMA3, DENOMA7, respec-

tively):

DENOM.A2 = [El + [ES] + [FJ1I1] + [El2’2] + [EI1I1I�I2]

+ [ES1111] + ES1212] + [ES111112I2]

U _ k�[ES]

t� - DENOMA2

4. Concentrations of each species are expressed in

terms of[E]. The term for any given complex is composed

ofa numerator and a denominator. The numerator is the
product of the concentrations of all ligands in the corn-

plex. The denominator is the product of all dissociation

constants between the complex and free enzyme, E.

Eq. AS can be written in an equivalent form, Eq. A6.

1 1
fb= 2 2 [A6]

Il ‘2
1+- 1+-

‘501 1502

7. Note that Eq. AS is not equivalent to the mutually

nonexclusive model of Chou and Talalay (1981) for the

case of second order inhibitors (m = 2). Rather, Eq. AS

and its equivalent, Eq. A6 is exactly equivalent to the

Bliss independence model, Eq. 11, for two second order

inhibitors. Thus, a complete specific derivation for the

case of two mutually nonexclusive, second order, non-
competitive enzyme inhibitors, which follows the gen-

eral but incomplete derivation provided by Chou and

Talalay (1981), yields an equation inconsistent with

their final model, Eq. CT22, but consistent with the

Bliss independence model, Eq. 11.

E. Possible Rationalization of the Mutually

Nonexclusive Model of C/iou and Talalay (1981)

1. The expansion of the mutually nonexclusive model

of Chou and Talalay (1981), Eq. CT22, for the case of
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m = 2, yields Eq. A7.

I i� ]2 � 12 ]2 I I� 121 ‘2 ]2

DENOMA7=1+I-I +

L’so,ij L’�] � [i;�;] [4c�2]
T T I 2 T T 7 2
11 �2 �i �2 �i ‘2

+2- +2- +2-
‘50,1 150,2 � 40,2 150,1 ‘50,2

1

ft = DENOMA7 [A7]

2. The difference between this expansion of the mutu-

ally nonexclusive model ofChou and Talalay (1981), Eq.

A7, and the mutually nonexclusive model derived above,

Eq. AS, which is equivalent to Bliss independence, is the

additional three right-hand terms in the denominator.

These three terms imply the existence of six additional

enzyme species-2 EI112, 2 E1112I2, 2 EI1I112, 2 ES1112, 2

ESI1I�I2, and 2 ES111112-that we initially assumed

were negligible and did not exist. This stems from the

key Hill assumption that when and if an inhibitor binds,

either I� or ‘2, two molecules of that inhibitor bind at

once. Possibly, one might be willing to get rid of this

assumption, and replace it with a less restrictive as-

sumption such as:

El1, �2’ ESI1, ESI2 are all negligible, but enzyme

forms that contain at least two inhibitor molecules, pos-

sibly a mixture of the two inhibitors, including E1112,

E’112’2, �1h1I2, ES1112, ESI1I�I2, and ES1111I2, are not

negligible.

If so, then the mutually nonexclusive model of Chou
and Talalay (1981) would have a firmer theoretical ba-

sis. However, it is unlikely that an equation derived

from a set ofvery unusual assumptions, for the rare case

oftwo mutually nonexclusive higher order inhibitors of a

single enzyme, would have general utility for modeling

concentration-effect phenomena from a wide spectrum of

complex agent interaction systems.

XI. Appendix B: Problems with the Use of the
Median Effect Plot and Combination Index

Calculations to Assess Drug Interactions

Both the inherent nonlinear nature of the median

effect plot and the incorrect calculation of the combina-

tion index (CI), for the case of mutual nonexclusivity,

contribute to incorrect artifactual conclusions concern-

ing synergism and antagonism, when applying the

method of Chou and Talalay (1984) to real laboratory

data. In addition, the median effect plot for drug combi-

nation data for mutually exclusive drugs showing syn-

ergism or antagonism will also be nonlinear. The extent,
origins, and impact of these problems are illustrated by

the simulation shown in figures Bl, B2, B3, in table B1,

and the following narrative.

FIG. B1. Upper panel: Data points plotted from table B1. The data

points and the curves connecting the points were simulated using Eq.

B1, that for mutual nonexclusivity, with Dm1 = 10, Dm2 = 1, m = 1,

and R = 10. The Y-axis is ElEmax or fu; the X-axis is the sum of drug

1 and drug 2 �ncentrations on a logarithmic scale. Lower panel: The

three median-effect lines were made by separately fitting each of the

three subsets of data with unweighted linear regression. The curved,

dashed line is the median-effect curve for the combination of drug 1 +

2 simulated from Eq. Bi. The rectangular boxes in each panel represent

equivalent ranges of fractional effect. The arrows on the side of the

boxes indicate the direction of decreasing fa (increasing flu).

, I I I I I I I I

fa

FIG. B3. Mutually exclusive CI vs. fa plots for the data from table

B1 and figure Bi. Curve A was generated in the exact way suggested by

Chou and Talalay (1984) and included in the commercially available

program (Chou and Chou, 1987); i.e., by estimatingDm1, m1, Dm2, m2,

Dm12, m12 with unweighted linear regression as in the lower panel of

figure B1, and then plugging these values into Eq. 25 to calculate CI for

a range offa values. Curve B was generated by calculating Dm� and

m12 with Eqs. B2 through B4, from the original (same as estimated)

values, Dm1 = 10, Dm2 = 1, m1 = m2 = 1, and then plugging these

values into Eq. 25. The box represents a range of fractional effects

equivalent to the boxes in figure Bi, with the arrows of the box mdi-

catingthe direction ofdecreasmgfa. The open data points represent the

eight combination points, each calculated with the CI formula for the

mutually exclusive assumption for the raw data itself Eq. 27.

A. Nonlinear Nature of the Median Effect Plot for

Mutual Nonexclusivity

The median effect plot for mutually nonexclusive

drugs is inherently nonlinear. This was shown originally
by Chou and Talalay (1981) in figure 2 of their paper.
Therefore, the estimation of Dm12 and m12 via simple
linear regression can never be correct. The data points in
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A C

JT�H�A

B4, for the restricted case of m1 = m2 = m, are not

included here but can be requested from W. R. Greco.)
Note the vertical dashed line in figure Bl, which shows

the alignment of the true Dm12 value. Also note the

small displacement of the estimated Dm12 value from

the true Dm12. It is the approximation of the varying
m12 by a constant m12 estimated from the median effect
linear regression, which is responsible for most of the

mismatch between the true median effect nonlinear

curve and the approximate straight line. (Note: The
numerators of Equations B2 and B4 are too wide to fit

easily into an equation in one column of a journal page.
Therefore, each numerator has been defined by the
terms NUMB2 and NUMB4, respectively):

RDm2 + Dm1
NUMB2 = - _________

(1 + R)Dm1Dm2

12

where:

RDm2 + Dm1
NUMB4 =

Dm 1Dm2

I RDm2+Dm1 � 4R
+ \f ( + R)Dm1Dm2 � (1 + R)2Dm1Dm2

‘-4

0

_o 0.2 0.4 0.6 0.8 10

fa

FIG. B2. Mutually nonexclusive CI vs. fa plots for the data from

table Bi and figure Bi. Curve A was generated in the exact way

suggested by Chou and Talalay(1984) and included in the commercially

available program (Chou and Chou, 1987); i.e., by estimating Dm1, m1,

Dm2, m2, Dm12, m12 with unweighted linear regression as in the lower

panel of figure Bi, and then plugging these values into Eq. 26 to

calculate CI for a range offa values. Curve B was generated by calcu-

latingDm12 and m12 with Eqs. B2 through 84, from the original (same

as estimated) values, Dm1 = 10, Dm2 = 1, m1 = m2 = 1, and then
plugging these values into Eq. 26. Curve C, CI = 1, was generated by

calculatingDm12 and m12 with Eqs. B2 through B4, but then using Eq.

B5 forthe Clcalculation. The box represents a range offractional effects

equivalent to the boxes in figure Bi, with the arrows of the box mdi-

cating the direction ofdecreasingftz. The open data points represent the

eight combination points, each calculated with the CI formula for the

mutually exclusive assumption for the raw data itself, Eq. 27.

figure B1 and table Bl were simulated by using Eq. Bi,
that for mutual nonexclusivity, and using Dm1 = 10,

Dm2 = �‘ m = 1, and R = 10. (Here, R is the ratio of

concentrations of D1D2). The data consists of 24 simu-
lated data points, 8 for drug 1 alone, 8 for drug 2 alone,

and 8 for the combination ofdrug 1+2 in a 10:1 constant

ratio. Four significant figures were retained through all

calculations to eliminate any appreciable errors in the

simulated data.

fa12 Jim -1 Jim D1 D2 D1D2
- =fu1�-l =-+---+

/1112 IL Dm1 Dm2 Dm1Dm2
[Bi]

In the upper panel of figure Bi, the three concentration-

effect curves were simulated directly with Eq. B1. The
data points in figure Bl correspond to the 24 simulated

points in table B1. In the lower panel, the three median
effect straight lines were made by separately fitting each
of the three sets of data with unweighted linear regres-

sion. The curved, dashed line is the nonlinear median

effect curve for the combination of drug 1 +2 simulated
from Eq. B1. The rectangular boxes in each panel rep-

resent equivalent ranges of effect. The arrows on the

sides of the boxes indicate the direction of decreasing [a

(from [a = 0.091 to 0.017). The parameters estimated
from the three linear regression lines were: Dm1 = 10.0,

m1 = 1.00, Dm2 = 1.00, m2 = 1.00, Dm12 = 4.04, m12 =

1.24. The correct Dm12 calculated from Eq. B2 was 4.56.
The correct m12 calculated from Eqs. B3 and B4, which
are [a-dependent, increased from 1.04 at [a = 0.01 to
1.49 at [a = 0.99. (The derivations of Eqs. B2 through

+ Dm1]Z +

[B2]

[B3]
Dm 1Dm2

Z(1 +

12

I RDm2 + Dm1 2 4R [a12 lJm

+ \i Dm1Dm2 � Dm1Dm2 1 - [a12

[B4]

Figure B2 is a mutually nonexciusive CI vs. [a plot for
the data in table Bi and figure Bl. Curve A in figure B2
was calculated as suggested by Chou and Talalay (1984),

from the three straight median effect lines in figure B1,

using the formula, Eq. 26, incorporated into the commer-

cial software package, Dose-Effect Analysis with Micro-

computers (Chou and Chou, 1987). The interested
reader should be able to reproduce this curve by plug-

ging the 24 data points listed in table Bi into the corn-
mercial software package. Like many real examples

from the literature, the standard CI vs. [a plot, curve A,
crosses the additivity, CI = 1 line. The conclusion from

SEARCH FOR SYNERGY

NUMB2

Dm12 2R

(1 + R)2Dm1Dm2

NUMB4z= R

-2
Dm 1Dm2
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TABLE Bi

Simulated data for mutual nonexciusivity examination*

0.5

1
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7
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0

0

0

0

0

0

0

0

0.5

1

2

5

7

10

20

50

D2

0

0
0

0

0

0
0
0

0.05

0.1

0.2

0.5

0.7

1

2

5

0.05

0.1

0.2

0.5

0.7

1

2

5

flu

0.9524

0.9091

0.8333

0.6667

0.5882

0.5000

0.3333

0.1667

0.9524

0.9091

0.8333

0.6667

0.5882

0.5000

0.3333

0.1667

0.9070

0.8264

0.6944

0.4444

0.3460

0.2500

0.1111

0.02778

#{237}a

0.04762

0.09091

0.1667

0.3333

0.4118

0.5000

0.6667

0.8333

0.04762

0.09091

0.1667

0.3333

0.4118

0.5000

0.6667

0.8333

0.0930

0.1736

0.3056

0.5556

0.6540

0.7500

0.8889
0.9722

logljlu_1 - 1]

-1.301

-1.000

-0.6989

-0.3011

-0.1548

0.0000

0.3011

0.6989

-1.301

-1.000

-0.6989

-0.3011

-0. 1548

0.0000

0.3011

0.6989

-0.9891

-0.6776

-0.3565

0.09699

0.2765

0.4771

0.9031

1.544

B. Incorrect Combination Index Calculations for the

Mutually Nonexclusive Case

Eq. 26, that suggested by Chou and Talalay (1984)

and incorporated into the commercial software (Chou
and Chou, 1987), is slightly wrong. This is shown by the

difference between curve B in figure B2 and the CI = 1
line. By using a rational trial-and-error strategy, we

discovered the correct form of the CI vs. [a equation for

the mutually nonexclusive case for the restricted case of
m = m1 = m2, Eq. B5 (Syracuse and Greco, 1986). An

equivalent form of Eq. BS has also been recently pub-
lished by Lam et al. (1991). When Eq. BS is used with

the correct values ofDm12 and m12, curve C results, the

correct CI = 1 line.

CI =

[B5]

+

C. Nonlinear Nature of the Median Effect Plot for

Mutual Exclusivity with Interaction

Because of the many problems inherent with assum-

ing a mutually nonexclusive model, one might prefer to
assume a mutually exclusive model for all experimental
data, including cases in which a median effect analysis

shows that m1 = m2 � m12. Combination plots gener-
ated with Eq. 25, that for mutual exclusivity (Chou and
Talalay, 1984), are presented in figure B3.

CI

Curve A is the CI calculated exactly as suggested by
Chou and Talalay (1984), and is the result that one
would find using the commercial software (Chou and
Chou, 1987) with the data in table B1. To generate curve

A, Eq. 25 was used with the six parameter estimates
derived from the three median effect lines of figure Bi.

As with the mutually nonexclusive assumption, the mu-
tually exclusive assumption still shows an initial incor-

rect antagonism because of the incorrect linear extrap-
olation of the inherently nonlinear median effect curve

for the drug combination. Curve B was also generated
with Eq. 25, but with the correct values for Dm12 (=

4.56) and m12 (1.04 to 1.49). Curve B does portray the
correct situation; i.e., synergism along the entire range

* The data was simulated using Eq. B1, that for mutual nonex-

clusivity, with Dm1 = 10, Dm2 = 1, m = 1, and R = 10. This is an
ideal data set with no random errors added; any inexactness is

caused by roundoff errors in the fourth significant figure.

Curve A is appreciable antagonism at low fractional

effects and appreciable synergism at high fractional ef-
fects. However, the data in table Bl was simulated for
pure, unadulterated, mutual nonexclusivity! The final
CI vs. [a plot should be a straight, horizontal line at CI =

1! Note the large box on the left-hand side of figure B2.
This is the same box as was shown in figure Bl, upper

and lower panel, for a range of concentration-effect, ex-

cept that its height has been magnified in the CI vs. [a
plot. Thus, the difference between the true nonlinear
median effect curve, and the approximate median effect
straight line, has been magnified in the CI vs. [a plot.

CI =

Curve B in figure B2 was generated with Eq. BS, but
with the correct values for Dm12 and m12 as calculated
from Eqs. B2 through B4. Curve B is closer to the target,
CI = 1 line, but there remains a problem.

+

[26]

[25]
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of [a (with reference to the mutually exclusive model).

However, because the method of Chou and Talalay
(1984) does not include a reliable method to estimate

Dm12 and m12 from the inherently nonlinear median

effect plot for drug combinations, a useful CI vs. [a plot,

such as curve B, is not readily generated.

The eight open points in figure B3 (and in figure B2) are
the eight combination data points from table Bl, directly

plotted without the estimation of Dm12 and m12. In-

stead, the raw data were plugged into Eq. 27, which
depends only on the individual drug parameters, Dm1,

m1, Dm2, and m2, to calculate CI. This approach has
been discussed (Chou, l991a), but to the best of our
knowledge, is not as yet available in the commercial
software (as of January, 1994).

D1 D2
CI= [a 1/m,� [a 1/rn2 [27]

Drnl1f Dm2 l�fa
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